BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11324759)

  • 1. The herpesvirus alkaline exonuclease belongs to the restriction endonuclease PD-(D/E)XK superfamily: insight from molecular modeling and phylogenetic analysis.
    Bujnicki JM; Rychlewski L
    Virus Genes; 2001 Mar; 22(2):219-30. PubMed ID: 11324759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function.
    Kosinski J; Feder M; Bujnicki JM
    BMC Bioinformatics; 2005 Jul; 6():172. PubMed ID: 16011798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site.
    Kaminska KH; Kawai M; Boniecki M; Kobayashi I; Bujnicki JM
    BMC Struct Biol; 2008 Nov; 8():48. PubMed ID: 19014591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases.
    Bujnicki JM; Rychlewski L
    Protein Sci; 2001 Mar; 10(3):656-60. PubMed ID: 11344334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grouping together highly diverged PD-(D/E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles.
    Bujnicki JM; Rychlewski L
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):69-72. PubMed ID: 11200231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile-profile alignments.
    Laganeckas M; Margelevicius M; Venclovas C
    Nucleic Acids Res; 2011 Mar; 39(4):1187-96. PubMed ID: 20961958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches.
    Knizewski L; Kinch LN; Grishin NV; Rychlewski L; Ginalski K
    BMC Struct Biol; 2007 Jun; 7():40. PubMed ID: 17584917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily.
    Steczkiewicz K; Muszewska A; Knizewski L; Rychlewski L; Ginalski K
    Nucleic Acids Res; 2012 Aug; 40(15):7016-45. PubMed ID: 22638584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition.
    Orlowski J; Boniecki M; Bujnicki JM
    Bioinformatics; 2007 Mar; 23(5):527-30. PubMed ID: 17242028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and bioinformatic studies on restriction endonucleases: inference of evolutionary relationships in the "midnight zone" of homology.
    Bujnicki JM
    Curr Protein Pept Sci; 2003 Oct; 4(5):327-37. PubMed ID: 14529527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of the restriction endonuclease-like superfamily inferred from comparison of protein structures.
    Bujnicki JM
    J Mol Evol; 2000 Jan; 50(1):39-44. PubMed ID: 10654258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a new family of putative PD-(D/E)XK nucleases with unusual phylogenomic distribution and a new type of the active site.
    Feder M; Bujnicki JM
    BMC Genomics; 2005 Feb; 6():21. PubMed ID: 15720711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DmGEN, a novel RAD2 family endo-exonuclease from Drosophila melanogaster.
    Ishikawa G; Kanai Y; Takata K; Takeuchi R; Shimanouchi K; Ruike T; Furukawa T; Kimura S; Sakaguchi K
    Nucleic Acids Res; 2004; 32(21):6251-9. PubMed ID: 15576351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.
    Bitinaite J; Mitkaite G; Dauksaite V; Jakubauskas A; Timinskas A; Vaisvila R; Lubys A; Janulaitis A
    Mol Genet Genomics; 2002 Jul; 267(5):664-72. PubMed ID: 12172806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels.
    Szczesny RJ; Hejnowicz MS; Steczkiewicz K; Muszewska A; Borowski LS; Ginalski K; Dziembowski A
    Nucleic Acids Res; 2013 Mar; 41(5):3144-61. PubMed ID: 23358826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a PD-(D/E)XK-like domain with a novel configuration of the endonuclease active site in the methyl-directed restriction enzyme Mrr and its homologs.
    Bujnicki JM; Rychlewski L
    Gene; 2001 Apr; 267(2):183-91. PubMed ID: 11313145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E)XK endonuclease.
    Knizewski L; Kinch L; Grishin NV; Rychlewski L; Ginalski K
    J Virol; 2006 Mar; 80(5):2575-7. PubMed ID: 16474163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases.
    Fuxreiter M; Simon I
    Protein Sci; 2002 Aug; 11(8):1978-83. PubMed ID: 12142452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases.
    Kovall RA; Matthews BW
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):7893-7. PubMed ID: 9653111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae.
    Chen WY; Ho JW; Huang JD; Watt RM
    BMC Mol Biol; 2011 Apr; 12():16. PubMed ID: 21501469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.