These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 11324974)
1. Laser thermal therapy: utility of interstitial fluence monitoring for locating optical sensors. Whelan WM; Chun P; Chin LC; Sherar MD; Vitkin IA Phys Med Biol; 2001 Apr; 46(4):N91-6. PubMed ID: 11324974 [TBL] [Abstract][Full Text] [Related]
2. Changes in relative light fluence measured during laser heating: implications for optical monitoring and modelling of interstitial laser photocoagulation. Chin LC; Whelan WM; Sherar MD; Vitkin IA Phys Med Biol; 2001 Sep; 46(9):2407-20. PubMed ID: 11580177 [TBL] [Abstract][Full Text] [Related]
3. Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm. Davidson SR; Vitkin IA; Sherar MD; Whelan WM Lasers Surg Med; 2005 Apr; 36(4):297-306. PubMed ID: 15786482 [TBL] [Abstract][Full Text] [Related]
4. Radiance-based monitoring of the extent of tissue coagulation during laser interstitial thermal therapy. Chin LC; Wilson BC; Whelan WM; Vitkin IA Opt Lett; 2004 May; 29(9):959-61. PubMed ID: 15143640 [TBL] [Abstract][Full Text] [Related]
5. Influence of laser wavelength and beam profile on the coagulation depth in a soft tissue phantom model. Wehner M; Betz P; Aden M Lasers Med Sci; 2019 Mar; 34(2):335-341. PubMed ID: 30043141 [TBL] [Abstract][Full Text] [Related]
6. Models and measurements of light intensity changes during laser interstitial thermal therapy: implications for optical monitoring of the coagulation boundary location. Chin LC; Whelan WM; Vitkin IA Phys Med Biol; 2003 Feb; 48(4):543-59. PubMed ID: 12630747 [TBL] [Abstract][Full Text] [Related]
7. Basic optothermal diffusion theory for interstitial laser photocoagulation. Wyman DR; Whelan WM Med Phys; 1994 Nov; 21(11):1651-6. PubMed ID: 7891623 [TBL] [Abstract][Full Text] [Related]
8. Optothermal profile of an ablation catheter with integrated microcoil for MR-thermometry during Nd:YAG laser interstitial thermal therapies of the liver—an in-vitro experimental and theoretical study. Kardoulaki EM; Syms RR; Young IR; Choonee K; Rea M; Gedroyc WM Med Phys; 2015 Mar; 42(3):1389-97. PubMed ID: 25735293 [TBL] [Abstract][Full Text] [Related]
9. Dynamic modeling of interstitial laser photocoagulation: implications for lesion formation in liver in vivo. Whelan WM; Wyman DR Lasers Surg Med; 1999; 24(3):202-8. PubMed ID: 10229151 [TBL] [Abstract][Full Text] [Related]
10. A tissue-mimicking prostate phantom for 980 nm laser interstitial thermal therapy. Geoghegan R; Santamaria A; Priester A; Zhang L; Wu H; Grundfest W; Marks L; Natarajan S Int J Hyperthermia; 2019; 36(1):993-1002. PubMed ID: 31544549 [No Abstract] [Full Text] [Related]
11. Temperature measurement artefacts of thermocouples and fluoroptic probes during laser irradiation at 810 nm. Reid AD; Gertner MR; Sherar MD Phys Med Biol; 2001 Jun; 46(6):N149-57. PubMed ID: 11419634 [TBL] [Abstract][Full Text] [Related]
12. The effects of dynamic optical properties during interstitial laser photocoagulation. Iizuka MN; Vitkin IA; Kolios MC; Sherar MD Phys Med Biol; 2000 May; 45(5):1335-57. PubMed ID: 10843108 [TBL] [Abstract][Full Text] [Related]
13. Photothermal determination of optical coefficients of tissue phantoms using an optical fibre probe. Laufer JG; Beard PC; Walker SP; Mills TN Phys Med Biol; 2001 Oct; 46(10):2515-30. PubMed ID: 11686272 [TBL] [Abstract][Full Text] [Related]
14. Monitoring Focal Laser Ablation with Interstitial Fluence Probes: Monte Carlo Simulation and Phantom Validation. Geoghegan R; Priester A; Zhang L; Wu H; Marks L; Natarajan S Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5272-5275. PubMed ID: 33019173 [TBL] [Abstract][Full Text] [Related]
15. Perturbative diffusion theory formalism for interpreting temporal light intensity changes during laser interstitial thermal therapy. Chin LC; Whelan WM; Vitkin IA Phys Med Biol; 2007 Mar; 52(6):1659-74. PubMed ID: 17327655 [TBL] [Abstract][Full Text] [Related]
16. Simplified treatment planning for interstitial laser thermotherapy by disregarding light transport: a numerical study. Olsrud J; Wirestam R; Persson BR; Tranberg KG Lasers Surg Med; 1999; 25(4):304-14. PubMed ID: 10534747 [TBL] [Abstract][Full Text] [Related]
17. A comparative optical analysis of laser side-firing devices: a guide to treatment. Anson K; Buonaccorsi G; Eddowes M; MacRobert A; Mills T; Watson G Br J Urol; 1995 Mar; 75(3):328-34. PubMed ID: 7735799 [TBL] [Abstract][Full Text] [Related]
18. The effect of laser power, blood perfusion, thermal and optical properties of human liver tissue on thermal damage in LITT. Shibib KS; Munshid MA; Lateef HA Lasers Med Sci; 2017 Dec; 32(9):2039-2046. PubMed ID: 28894956 [TBL] [Abstract][Full Text] [Related]
19. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy. Kim S; Jeong S Lasers Med Sci; 2014 Mar; 29(2):637-44. PubMed ID: 23807181 [TBL] [Abstract][Full Text] [Related]
20. Effects of 532 nm pulsed-KTP laser parameters on vessel ablation in the avian chorioallantoic membrane: implications for vocal fold mucosa. Broadhurst MS; Akst LM; Burns JA; Kobler JB; Heaton JT; Anderson RR; Zeitels SM Laryngoscope; 2007 Feb; 117(2):220-5. PubMed ID: 17204988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]