BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 11325348)

  • 1. In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation.
    Cormier A; Morin C; Zini R; Tillement JP; Lagrue G
    Brain Res; 2001 May; 900(1):72-9. PubMed ID: 11325348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of resveratrol on the rat brain respiratory chain.
    Zini R; Morin C; Bertelli A; Bertelli AA; Tillement JP
    Drugs Exp Clin Res; 1999; 25(2-3):87-97. PubMed ID: 10370869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dehydroepiandrosterone and alpha-estradiol limit the functional alterations of rat brain mitochondria submitted to different experimental stresses.
    Morin C; Zini R; Simon N; Tillement JP
    Neuroscience; 2002; 115(2):415-24. PubMed ID: 12421607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thyroid hormone regulates oxidative phosphorylation in the cerebral cortex and striatum of neonatal rats.
    Martinez B; del Hoyo P; Martin MA; Arenas J; Perez-Castillo A; Santos A
    J Neurochem; 2001 Sep; 78(5):1054-63. PubMed ID: 11553679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.
    Lenaz G
    IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methotrexate: studies on the cellular metabolism. I. Effect on mitochondrial oxygen uptake and oxidative phosphorylation.
    Yamamoto N; Oliveira MB; Campello Ade P; Lopes LC; Klüppel ML
    Cell Biochem Funct; 1988 Jan; 6(1):61-6. PubMed ID: 2832095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic performance and oxygen free-radicals.
    Benzi G
    J Sports Med Phys Fitness; 1993 Sep; 33(3):205-22. PubMed ID: 8107472
    [No Abstract]   [Full Text] [Related]  

  • 13. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca²⁺-induced mitochondrial impairment.
    Nuñez-Figueredo Y; Pardo-Andreu GL; Ramírez-Sánchez J; Delgado-Hernández R; Ochoa-Rodríguez E; Verdecia-Reyes Y; Naal Z; Muller AP; Portela LV; Souza DO
    Brain Res Bull; 2014 Oct; 109():68-76. PubMed ID: 25305343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inhibitors of complex I and II of the mitochondrial respiratory chain].
    Miki T
    Nihon Rinsho; 2002 Apr; 60 Suppl 4():171-4. PubMed ID: 12013844
    [No Abstract]   [Full Text] [Related]  

  • 17. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J; Engstová H; Ježek P
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells.
    Suzuki S; Higuchi M; Proske RJ; Oridate N; Hong WK; Lotan R
    Oncogene; 1999 Nov; 18(46):6380-7. PubMed ID: 10597238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.