BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11325375)

  • 1. The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds.
    Lee SY; Fong CW; Wu RS
    J Exp Mar Biol Ecol; 2001 Apr; 259(1):23-50. PubMed ID: 11325375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the impact of predation by fish on the assemblage structure of fishes associated with seagrass (Heterozostera tasmanica) (Martens ex Ascherson) den Hartog, and unvegetated sand habitats.
    Hindell JS; Jenkins GP; Keough MJ
    J Exp Mar Biol Ecol; 2000 Dec; 255(2):153-174. PubMed ID: 11108849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in benthic community structure and sediment characteristics after natural recolonisation of the seagrass Zostera muelleri.
    Lundquist CJ; Jones TC; Parkes SM; Bulmer RH
    Sci Rep; 2018 Sep; 8(1):13250. PubMed ID: 30185831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure.
    Yeager LA; Geyer JK; Fodrie FJ
    J Anim Ecol; 2019 Nov; 88(11):1743-1754. PubMed ID: 31325173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meiofaunal communities in a tropical seagrass bed and adjacent unvegetated sediments with note on sufficient sample size for determining local diversity indices.
    Liao JX; Yeh HM; Mok HK
    Zool Stud; 2015; 54():e14. PubMed ID: 31966101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreasing seagrass density negatively influences associated fauna.
    McCloskey RM; Unsworth RK
    PeerJ; 2015; 3():e1053. PubMed ID: 26137432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiversity differentials between the numerically-dominant macrobenthos of seagrass and adjacent unvegetated sediment in the absence of sandflat bioturbation.
    Barnes RS; Barnes MK
    Mar Environ Res; 2014 Aug; 99():34-43. PubMed ID: 24954864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia.
    Reusch TB; Williams SL
    Oecologia; 1998 Jan; 113(3):428-441. PubMed ID: 28307828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-canopy seagrass beds still provide important coastal protection services.
    Christianen MJ; van Belzen J; Herman PM; van Katwijk MM; Lamers LP; van Leent PJ; Bouma TJ
    PLoS One; 2013; 8(5):e62413. PubMed ID: 23723969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large- and small-scale effects of habitat structure on rates of predation: how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve.
    Irlandi EA
    Oecologia; 1994 Jul; 98(2):176-183. PubMed ID: 28313975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan).
    Magni P; Como S; Kamijo A; Montani S
    Mar Environ Res; 2017 Oct; 131():90-102. PubMed ID: 28967507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors controlling the vertical zonation of the intertidal seagrass, Zostera japonica in its native range in the northwestern Pacific.
    Kim SH; Kim JW; Kim YK; Park SR; Lee KS
    Mar Environ Res; 2020 May; 157():104959. PubMed ID: 32275500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid enhancement of multiple ecosystem services following the restoration of a coastal foundation species.
    Beheshti KM; Williams SL; Boyer KE; Endris C; Clemons A; Grimes T; Wasson K; Hughes BB
    Ecol Appl; 2022 Jan; 32(1):e02466. PubMed ID: 34614246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds.
    Bowden DA; Rowden AA; Attrill MJ
    J Exp Mar Biol Ecol; 2001 May; 259(2):133-154. PubMed ID: 11343709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down control of epifauna by fishes enhances seagrass production.
    Lewis LS; Anderson TW
    Ecology; 2012 Dec; 93(12):2746-57. PubMed ID: 23431604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elements of habitat complexity that influence harpacticoid copepods associated with seagrass beds in a temperate bay.
    Jenkins GP; Walker-Smith GK; Hamer PA
    Oecologia; 2002 May; 131(4):598-605. PubMed ID: 28547555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-native red alga Gracilaria vermiculophylla compensates for seagrass loss as blue crab nursery habitat in the emerging Chesapeake Bay ecosystem.
    Wood MA; Lipcius RN
    PLoS One; 2022; 17(5):e0267880. PubMed ID: 35639716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seagrass vegetation affect the vertical organization of microbial communities in sediment.
    Sun Y; Song Z; Zhang H; Liu P; Hu X
    Mar Environ Res; 2020 Dec; 162():105174. PubMed ID: 33099080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of seagrass restoration on coastal fish abundance and diversity.
    Hardison SB; McGlathery KJ; Castorani MCN
    Conserv Biol; 2023 Dec; 37(6):e14147. PubMed ID: 37424354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of habitat structure on the recruitment and mortality of an epibiotic macroalga.
    Inglis GJ
    Oecologia; 1994 Sep; 99(3-4):352-365. PubMed ID: 28313891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.