These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11325708)

  • 1. Numerical analysis of Ca2+ depletion in the transverse tubular system of mammalian muscle.
    Friedrich O; Ehmer T; Uttenweiler D; Vogel M; Barry PH; Fink RH
    Biophys J; 2001 May; 80(5):2046-55. PubMed ID: 11325708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged high-pressure treatments in mammalian skeletal muscle result in loss of functional sodium channels and altered calcium channel kinetics.
    Friedrich O; Kress KR; Hartmann M; Frey B; Sommer K; Ludwig H; Fink RH
    Cell Biochem Biophys; 2006; 45(1):71-83. PubMed ID: 16679565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres.
    Friedrich O; Ehmer T; Fink RH
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):757-70. PubMed ID: 10358116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of aging on Ca2+ signaling in murine mesenteric arterial smooth muscle cells.
    del Corsso C; Ostrovskaya O; McAllister CE; Murray K; Hatton WJ; Gurney AM; Spencer NJ; Wilson SM
    Mech Ageing Dev; 2006 Apr; 127(4):315-23. PubMed ID: 16413046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based analysis of elementary Ca(2+) release events in skinned mammalian skeletal muscle fibres.
    Uttenweiler D; Kirsch WG; Schulzke E; Both M; Fink RH
    Eur Biophys J; 2002 Sep; 31(5):331-40. PubMed ID: 12202909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.
    Uttenweiler D; Weber C; Fink RH
    Biophys J; 1998 Apr; 74(4):1640-53. PubMed ID: 9545029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of L- and T-type Ca2+ currents during the in vitro aging of murine myogenic (i28) cells in culture.
    Luin E; Ruzzier F
    Cell Calcium; 2007 May; 41(5):479-89. PubMed ID: 17064763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation-contraction coupling in isolated locomotor muscle fibres from the pelagic tunicate Doliolum which lack both sarcoplasmic reticulum and transverse tubular system.
    Inoue I; Tsutsui I; Bone Q
    J Comp Physiol B; 2002 Aug; 172(6):541-6. PubMed ID: 12192516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+) influx and opening of Ca(2+)-activated K(+) channels in muscle fibers from control and mdx mice.
    Mallouk N; Allard B
    Biophys J; 2002 Jun; 82(6):3012-21. PubMed ID: 12023224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium signaling in isolated skeletal muscle fibers investigated under "Silicone Voltage-Clamp" conditions.
    Collet C; Pouvreau S; Csernoch L; Allard B; Jacquemond V
    Cell Biochem Biophys; 2004; 40(2):225-36. PubMed ID: 15054224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid pH and PO2 changes in the tissue recording chamber during stoppage of a gas-equilibrated perfusate: effects on calcium currents in ventral horn neurons.
    Carlin KP; Brownstone RM
    Eur J Neurosci; 2006 Sep; 24(5):1353-8. PubMed ID: 16965545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of calcium influx through voltage-operated calcium channels and of calcium mobilization in the physiology of Schistosoma mansoni muscle contractions.
    Mendonça-Silva DL; Novozhilova E; Cobbett PJ; Silva CL; Noël F; Totten MI; Maule AG; Day TA
    Parasitology; 2006 Jul; 133(Pt 1):67-74. PubMed ID: 16566851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-clamp analysis and computational model of dopaminergic neurons from mouse retina.
    Xiao J; Cai Y; Yen J; Steffen M; Baxter DA; Feigenspan A; Marshak D
    Vis Neurosci; 2004; 21(6):835-49. PubMed ID: 15733339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle.
    Friedrich O; Hund E; Weber C; Hacke W; Fink RH
    J Neurol; 2004 Jan; 251(1):53-65. PubMed ID: 14999490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium concentration changes in the transverse tubules of vertebrate skeletal muscle.
    Almers W
    Fed Proc; 1980 Apr; 39(5):1527-32. PubMed ID: 7364047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (alpha1G) calcium channel: CaV3.2 (alpha1H) is the main functional calcium channel in wild-type spermatogenic cells.
    Stamboulian S; Kim D; Shin HS; Ronjat M; De Waard M; Arnoult C
    J Cell Physiol; 2004 Jul; 200(1):116-24. PubMed ID: 15137064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+- and voltage-dependent inactivation of the expressed L-type Ca(v)1.2 calcium channel.
    Lacinová L; Hofmann F
    Arch Biochem Biophys; 2005 May; 437(1):42-50. PubMed ID: 15820215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release.
    Griffiths H; MacLeod KT
    J Gen Physiol; 2003 May; 121(5):353-73. PubMed ID: 12719483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
    Han C; Tavi P; Weckström M
    Biophys J; 2002 Mar; 82(3):1483-96. PubMed ID: 11867463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.