These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11325708)

  • 21. Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors.
    Cia D; Bordais A; Varela C; Forster V; Sahel JA; Rendon A; Picaud S
    J Neurophysiol; 2005 Mar; 93(3):1468-75. PubMed ID: 15483058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins.
    Racay P; Gregory P; Schwaller B
    FEBS J; 2006 Jan; 273(1):96-108. PubMed ID: 16367751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the epithelial calcium channel, ECaC, by intracellular Ca2+.
    Nilius B; Prenen J; Vennekens R; Hoenderop JG; Bindels RJ; Droogmans G
    Cell Calcium; 2001 Jun; 29(6):417-28. PubMed ID: 11352507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory effects of somatostatin on cholecystokinin octapeptide induced bile regurgitation under stress: ionic and molecular mechanisms.
    Si X; Huang L; Luo H; Shi R
    Regul Pept; 2009 Aug; 156(1-3):34-41. PubMed ID: 19445970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons.
    Kubista H; Mafra RA; Chong Y; Nicholson GM; Beirão PS; Cruz JS; Boehm S; Nentwig W; Kuhn-Nentwig L
    Neuropharmacology; 2007 Jun; 52(8):1650-62. PubMed ID: 17517422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane ion conductances of mammalian skeletal muscle in the post-decompression state after high-pressure treatment.
    Friedrich O; Kress KR; Ludwig H; Fink RH
    J Membr Biol; 2002 Jul; 188(1):11-22. PubMed ID: 12172643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frog muscle fibre action potential and different extracellular calcium concentration at lowered pH in the medium.
    Radicheva N; Mileva K; Martinov V
    Acta Physiol Pharmacol Bulg; 1998; 23(3-4):107-13. PubMed ID: 10672337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Slow asymmetric currents and ultrastructure of tubulo-reticular contacts in the muscle fibers of the crayfish].
    Genchek M; Zakhar I; Zakharova D; Ugrik V; Novotova M
    Neirofiziologiia; 1984; 16(5):612-9. PubMed ID: 6096735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. L-Type Ca(2+) channel charge movement and intracellular Ca(2+) in skeletal muscle fibers from aging mice.
    Wang ZM; Messi ML; Delbono O
    Biophys J; 2000 Apr; 78(4):1947-54. PubMed ID: 10733973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization.
    Almers W; Fink R; Palade PT
    J Physiol; 1981 Mar; 312():177-207. PubMed ID: 6267262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers.
    DiFranco M; Vergara JL
    J Gen Physiol; 2011 Oct; 138(4):393-419. PubMed ID: 21948948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle.
    Beam KG; Knudson CM
    J Gen Physiol; 1988 Jun; 91(6):799-815. PubMed ID: 2458430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers.
    DiFranco M; Herrera A; Vergara JL
    J Gen Physiol; 2011 Jan; 137(1):21-41. PubMed ID: 21149546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux.
    Smith PJ; Hammar K; Porterfield DM; Sanger RH; Trimarchi JR
    Microsc Res Tech; 1999 Sep; 46(6):398-417. PubMed ID: 10504217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers.
    DiFranco M; Capote J; Quiñonez M; Vergara JL
    J Gen Physiol; 2007 Dec; 130(6):581-600. PubMed ID: 18040060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-cell voltage clamp on skeletal muscle fibers with the silicone-clamp technique.
    Lefebvre R; Pouvreau S; Collet C; Allard B; Jacquemond V
    Methods Mol Biol; 2014; 1183():159-70. PubMed ID: 25023307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-cell voltage clamp on skeletal muscle fibers with the silicone-clamp technique.
    Pouvreau S; Collet C; Allard B; Jacquemond V
    Methods Mol Biol; 2007; 403():185-94. PubMed ID: 18827995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action potential morphology influences intracellular calcium handling stability and the occurrence of alternans.
    Jordan PN; Christini DJ
    Biophys J; 2006 Jan; 90(2):672-80. PubMed ID: 16239324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical methods to determine calcium release flux from calcium transients in muscle cells.
    Timmer J; Müller T; Melzer W
    Biophys J; 1998 Apr; 74(4):1694-707. PubMed ID: 9545033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers.
    Chen W; Lee RC
    Biophys J; 1994 Mar; 66(3 Pt 1):700-9. PubMed ID: 8011901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.