BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11325730)

  • 1. Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics.
    Cantor RS
    Biophys J; 2001 May; 80(5):2284-97. PubMed ID: 11325730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid composition and the lateral pressure profile in bilayers.
    Cantor RS
    Biophys J; 1999 May; 76(5):2625-39. PubMed ID: 10233077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lateral pressure profile in membranes: a physical mechanism of general anesthesia.
    Cantor RS
    Biochemistry; 1997 Mar; 36(9):2339-44. PubMed ID: 9054538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers.
    Griepernau B; Böckmann RA
    Biophys J; 2008 Dec; 95(12):5766-78. PubMed ID: 18849412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical mechanisms of anesthetic action: historical perspective and review of current concepts.
    Kaufman RD
    Anesthesiology; 1977 Jan; 46(1):49-62. PubMed ID: 188356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentrations of anesthetics across the water-membrane interface; the Meyer-Overton hypothesis revisited.
    Pohorille A; Wilson MA; New MH; Chipot C
    Toxicol Lett; 1998 Nov; 100-101():421-30. PubMed ID: 10049175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anesthetic effect of dexmedetomidine does not adhere to the Meyer-Overton rule but is reversed by hydrostatic pressure.
    Tonner PH; Scholz J; Koch C; Schulte am Esch J
    Anesth Analg; 1997 Mar; 84(3):618-22. PubMed ID: 9052313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lateral pressure profile in membranes: a physical mechanism of general anesthesia.
    Cantor RS
    Toxicol Lett; 1998 Nov; 100-101():451-8. PubMed ID: 10049179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of general anesthetic potency with solubility in membranes.
    Janoff AS; Pringle MJ; Miller KW
    Biochim Biophys Acta; 1981 Nov; 649(1):125-8. PubMed ID: 7306543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anesthetic potency of two novel synthetic polyhydric alkanols longer than the n-alkanol cutoff: evidence for a bilayer-mediated mechanism of anesthesia?
    Mohr JT; Gribble GW; Lin SS; Eckenhoff RG; Cantor RS
    J Med Chem; 2005 Jun; 48(12):4172-6. PubMed ID: 15943489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of mechanosensitivity.
    Markin VS; Sachs F
    Phys Biol; 2004 Jun; 1(1-2):110-24. PubMed ID: 16204828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of anesthesia: the potency of four derivatives of octane corresponds to their hydrogen bonding capacity.
    Brockerhoff H; Brockerhoff S; Box LL
    Lipids; 1986 Jun; 21(6):405-8. PubMed ID: 3736350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering?
    Firestone LL; Alifimoff JK; Miller KW
    Mol Pharmacol; 1994 Sep; 46(3):508-15. PubMed ID: 7935332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine.
    Jerabek H; Pabst G; Rappolt M; Stockner T
    J Am Chem Soc; 2010 Jun; 132(23):7990-7. PubMed ID: 20527936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of temperature and pressure on the thermodynamic activity of anesthetics.
    Kaminoh Y; Kamaya H; Tashiro C; Ueda I
    Toxicol Lett; 1998 Nov; 100-101():353-7. PubMed ID: 10049164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipole potentials and spontaneous curvature: membrane properties that could mediate anesthesia.
    Cafiso DS
    Toxicol Lett; 1998 Nov; 100-101():431-9. PubMed ID: 10049176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of membrane lipids on ion channel structure and function.
    Tillman TS; Cascio M
    Cell Biochem Biophys; 2003; 38(2):161-90. PubMed ID: 12777713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic models of general anesthetics for use in in silico biological studies.
    Arcario MJ; Mayne CG; Tajkhorshid E
    J Phys Chem B; 2014 Oct; 118(42):12075-86. PubMed ID: 25303275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
    Tan A; Ziegler A; Steinbauer B; Seelig J
    Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency.
    North C; Cafiso DS
    Biophys J; 1997 Apr; 72(4):1754-61. PubMed ID: 9083679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.