These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1132584)

  • 1. Permeability of Xenopus laevis embryos: specific incorporation of precursors into eukaryotic proteins and nucleic acids.
    Hampel A; Prahlad KV; Brei ST; Ruefer B; Mlot C
    Dev Biol; 1975 May; 44(1):169-77. PubMed ID: 1132584
    [No Abstract]   [Full Text] [Related]  

  • 2. The degradation of ribonucleic acids injected into Xenopus laevis oocytes.
    Allende CC; Allende JE; Firtel RA
    Cell; 1974 Jul; 2(3):189-96. PubMed ID: 4370441
    [No Abstract]   [Full Text] [Related]  

  • 3. Sites of synthesis of chloroplast-membrane proteins. Evidence for three types of ribosomes engaged in chloroplast-protein synthesis.
    Apel K; Schweiger HG
    Eur J Biochem; 1973 Oct; 38(2):373-83. PubMed ID: 4773878
    [No Abstract]   [Full Text] [Related]  

  • 4. A poly U directed phenylalanine polymerizing system from Neurospora crassa: general characterization and ionic effects.
    Sturani E; Alberghina FA
    Ital J Biochem; 1970; 19(5):319-36. PubMed ID: 5515872
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of ribosomal subunits in eukaryotic protein chain initiation.
    Weeks DP; Verma DP; Seal SN; Marcus A
    Nature; 1972 Mar; 236(5343):167-8. PubMed ID: 4553693
    [No Abstract]   [Full Text] [Related]  

  • 6. Biogenesis of mitochondria during Xenopus laevis development.
    Chase JW; Dawid IB
    Dev Biol; 1972 Apr; 27(4):504-18. PubMed ID: 4337711
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in the polysome content of developing Xenopus laevis embryos.
    Woodland HR
    Dev Biol; 1974 Sep; 40(1):90-101. PubMed ID: 4472028
    [No Abstract]   [Full Text] [Related]  

  • 8. [Synthesis of stable RNA by a stringent Escherichia coli strain during specific amino acid deprivation].
    Galibert F; Eladari ME; Larsen CJ; Boiron M
    Eur J Biochem; 1970 Apr; 13(2):273-80. PubMed ID: 4909305
    [No Abstract]   [Full Text] [Related]  

  • 9. A correlation between the polysome pattern and the synthesis of transfer RNA in Chang's liver cells.
    Bölcsföldi G
    Exp Cell Res; 1974 Oct; 88(2):231-40. PubMed ID: 4426332
    [No Abstract]   [Full Text] [Related]  

  • 10. Biochemical research on oogenesis: protein synthesis in whole cells and in cell-free extracts of Xenopus laevis immature ovaries.
    Denis H; le Maire M
    Biochimie; 1987 May; 69(5):475-83. PubMed ID: 3118963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reiterated transfer RNA genes of Xenopus laevis.
    Clarkson SG; Birnstiel ML; Serra V
    J Mol Biol; 1973 Sep; 79(2):391-410. PubMed ID: 4760135
    [No Abstract]   [Full Text] [Related]  

  • 12. A sensitive in vitro protein synthesizing system from Ehrlich ascites mitochondria.
    Avadhani NG; Rutman RJ
    Biochem Biophys Res Commun; 1974 May; 58(1):42-9. PubMed ID: 4831078
    [No Abstract]   [Full Text] [Related]  

  • 13. Incorporation in vivo of 14C-labelled amino acids into the proteins of mitochondrial ribosomes from Neurospora crassa sensitive to cycloheximide and insensitive to Chloramphenicol.
    Neupert W; Sebald W; Schwab AJ; Massinger P; Bücher T
    Eur J Biochem; 1969 Oct; 10(3):589-91. PubMed ID: 5356628
    [No Abstract]   [Full Text] [Related]  

  • 14. Protein synthesis in sterile chloroplasts from Lemna minor L.
    Nelles S; Parthier B
    Exp Cell Res; 1969 Dec; 58(2):225-33. PubMed ID: 4935421
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.
    Shiokawa K; Aso M; Kondo T; Takai J; Yoshida J; Mishina T; Fuchimukai K; Ogasawara T; Kariya T; Tashiro K; Igarashi K
    Amino Acids; 2010 Feb; 38(2):439-49. PubMed ID: 20013010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early synthesis of nucleic acids in germinating wheat embryos.
    Chen D
    Biochem Soc Symp; 1973; (38):1-15. PubMed ID: 4807455
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of the acceptance activity of the ribosome-bound and the total cellular transfer ribonucleic acids from SV40-transformed mouse fibroblasts.
    Katze JR; Mason KH
    Biochim Biophys Acta; 1973 Dec; 331(3):369-81. PubMed ID: 4360078
    [No Abstract]   [Full Text] [Related]  

  • 18. Degradation of ribosomal RNA during chicken lens development.
    Zapisek WF; Papaconstantinou J
    Biochim Biophys Acta; 1973 Apr; 299(4):603-11. PubMed ID: 4350631
    [No Abstract]   [Full Text] [Related]  

  • 19. Affinity labeling of the ribonucleic acid component adjacent to the peptidyl recognition center of peptidyl transferase in Escherichia coli ribosomes.
    Yukioka M; Hatayama T; Morisawa S
    Biochim Biophys Acta; 1975 May; 390(2):192-208. PubMed ID: 239742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-coordinated accumulation and synthesis of 5S ribonucleic acid by ovaries of Xenopus laevis.
    Ford PJ
    Nature; 1971 Oct; 233(5321):561-4. PubMed ID: 4939984
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.