BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11325956)

  • 1. Effects of mutations in the Pseudomonas putida miaA gene: regulation of the trpE and trpGDC operons in P. putida by attenuation.
    Olekhnovich I; Gussin GN
    J Bacteriol; 2001 May; 183(10):3256-60. PubMed ID: 11325956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC.
    Essar DW; Eberly L; Crawford IP
    J Bacteriol; 1990 Feb; 172(2):867-83. PubMed ID: 2404959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization.
    Endoh T; Habe H; Nojiri H; Yamane H; Omori T
    Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain.
    Adaikkalam V; Swarup S
    Can J Microbiol; 2005 Mar; 51(3):209-16. PubMed ID: 15920618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement of the Escherichia coli trp operon attenuation control codons alters operon expression.
    Landick R; Yanofsky C; Choo K; Phung L
    J Mol Biol; 1990 Nov; 216(1):25-37. PubMed ID: 2231731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications.
    Essar DW; Eberly L; Hadero A; Crawford IP
    J Bacteriol; 1990 Feb; 172(2):884-900. PubMed ID: 2153661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and molecular organization of the alkylbenzene catabolism operon in the psychrotrophic strain Pseudomonas putida 01G3.
    Chablain PA; Zgoda AL; Sarde CO; Truffaut N
    Appl Environ Microbiol; 2001 Jan; 67(1):453-8. PubMed ID: 11133479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants of pheV in Escherichia coli affecting control by attenuation of the pheS, T and pheA operons. Two distinct mechanisms for de-attenuation.
    Pages D; Buckingham RH
    J Mol Biol; 1990 Nov; 216(1):17-24. PubMed ID: 2231729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FinR Regulates Expression of
    Xiao Y; Zhu W; Liu H; Nie H; Chen W; Huang Q
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440.
    Nie H; Xiao Y; Liu H; He J; Chen W; Huang Q
    Environ Microbiol Rep; 2017 Oct; 9(5):571-580. PubMed ID: 28517238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1.
    Endoh T; Habe H; Yoshida T; Nojiri H; Omori T
    Microbiology (Reading); 2003 Apr; 149(Pt 4):991-1000. PubMed ID: 12686641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation.
    Lee K; Ryu EK; Choi KS; Cho MC; Jeong JJ; Choi EN; Lee SO; Yoon DY; Hwang I; Kim CK
    J Microbiol; 2006 Apr; 44(2):192-9. PubMed ID: 16728956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergic role of the two ars operons in arsenic tolerance in Pseudomonas putida KT2440.
    Fernández M; Udaondo Z; Niqui JL; Duque E; Ramos JL
    Environ Microbiol Rep; 2014 Oct; 6(5):483-9. PubMed ID: 25646541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization and application of a tightly regulated MekR/P mekA expression system in Escherichia coli and Pseudomonas putida.
    Graf N; Altenbuchner J
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8239-51. PubMed ID: 23771781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas putida--a versatile biocatalyst.
    Wackett LP
    Nat Biotechnol; 2003 Feb; 21(2):136-8. PubMed ID: 12560839
    [No Abstract]   [Full Text] [Related]  

  • 16. [Genetic control of tryptophan hypersynthesis in regulatory mutants of Pseudomonas putida].
    Olekhnovich IN; Fomichev IuK
    Genetika; 1991 Apr; 27(4):649-56. PubMed ID: 1879681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa.
    Hester KL; Lehman J; Najar F; Song L; Roe BA; MacGregor CH; Hager PW; Phibbs PV; Sokatch JR
    J Bacteriol; 2000 Feb; 182(4):1144-9. PubMed ID: 10648542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS.
    Carl B; Fetzner S
    Appl Environ Microbiol; 2005 Dec; 71(12):8618-26. PubMed ID: 16332855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of reciprocal adhesion genes in pathogenic and non-pathogenic Pseudomonas.
    Duque E; de la Torre J; Bernal P; Molina-Henares MA; Alaminos M; Espinosa-Urgel M; Roca A; Fernández M; de Bentzmann S; Ramos JL
    Environ Microbiol; 2013 Jan; 15(1):36-48. PubMed ID: 22458445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2.
    Velázquez F; Parro V; de Lorenzo V
    Mol Microbiol; 2005 Sep; 57(6):1557-69. PubMed ID: 16135224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.