These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 11327162)
1. The evolution of armament strength: evidence for a constraint on the biting performance of claws of durophagous decapods. Taylor GM Evolution; 2001 Mar; 55(3):550-60. PubMed ID: 11327162 [TBL] [Abstract][Full Text] [Related]
2. Maximum force production: why are crabs so strong? Taylor GM Proc Biol Sci; 2000 Jul; 267(1451):1475-80. PubMed ID: 10983834 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary variation in the mechanics of fiddler crab claws. Swanson BO; George MN; Anderson SP; Christy JH BMC Evol Biol; 2013 Jul; 13():137. PubMed ID: 23855770 [TBL] [Abstract][Full Text] [Related]
4. Cuticle Strength and the Size-Dependence of Safety Factors in Cancer Crab Claws. Palmer AR; Taylor GM; Barton A Biol Bull; 1999 Jun; 196(3):281-294. PubMed ID: 28296491 [TBL] [Abstract][Full Text] [Related]
5. Building a dishonest signal: the functional basis of unreliable signals of strength in males of the two-toned fiddler crab, Uca vomeris. Bywater CL; Seebacher F; Wilson RS J Exp Biol; 2015 Oct; 218(Pt 19):3077-82. PubMed ID: 26254326 [TBL] [Abstract][Full Text] [Related]
6. Pinching forces in crayfish and fiddler crabs, and comparisons with the closing forces of other animals. Claussen DL; Gerald GW; Kotcher JE; Miskell CA J Comp Physiol B; 2008 Mar; 178(3):333-42. PubMed ID: 18064468 [TBL] [Abstract][Full Text] [Related]
7. Legs of male fiddler crabs evolved to compensate for claw exaggeration and enhance claw functionality during waving displays. Bywater CL; Wilson RS; Monro K; White CR Evolution; 2018 Nov; 72(11):2491-2502. PubMed ID: 30284733 [TBL] [Abstract][Full Text] [Related]
9. Crabs grab strongly depending on mechanical advantages of pinching and disarticulation of chela. Fujiwara S; Kawai H J Morphol; 2016 Oct; 277(10):1259-72. PubMed ID: 27400407 [TBL] [Abstract][Full Text] [Related]
10. Exoskeletal Trade-off between Claws and Carapace in Deep-sea Hydrothermal Vent Decapod Crustaceans. Cho B; Seo H; Hong J; Jang SJ; Kim T Integr Comp Biol; 2024 Jul; 64(1):80-91. PubMed ID: 38599630 [TBL] [Abstract][Full Text] [Related]
11. Morphological phylogeny of alpheid shrimps: parallel preadaptation and the origin of a key morphological innovation, the snapping claw. Anker A; Ahyong ST; Noël PY; Palmer AR Evolution; 2006 Dec; 60(12):2507-28. PubMed ID: 17263113 [TBL] [Abstract][Full Text] [Related]
12. Recovery of Claw Size and Function Following Autotomy in Cancer productus (Decapoda: Brachyura). Brock RE; Smith LD Biol Bull; 1998 Feb; 194(1):53-62. PubMed ID: 28574785 [TBL] [Abstract][Full Text] [Related]
13. Ubiquitin and actin expression in claw muscles of land crab, Gecarcinus lateralis, and American lobster, Homarus americanus: differential expression of ubiquitin in two slow muscle fiber types during molt-induced atrophy. Koenders A; Yu X; Chang ES; Mykles DL J Exp Zool; 2002 Jun; 292(7):618-32. PubMed ID: 12115927 [TBL] [Abstract][Full Text] [Related]
14. Scaling of feeding biomechanics in the horn shark Heterodontus francisci: ontogenetic constraints on durophagy. Kolmann MA; Huber DR Zoology (Jena); 2009; 112(5):351-61. PubMed ID: 19428230 [TBL] [Abstract][Full Text] [Related]
16. The design of a beautiful weapon: compensation for opposing sexual selection on a trait with two functions. Dennenmoser S; Christy JH Evolution; 2013 Apr; 67(4):1181-8. PubMed ID: 23550765 [TBL] [Abstract][Full Text] [Related]
17. Harder, better, faster, stronger: Weapon size is more sexually dimorphic than weapon biomechanical components in two freshwater anomuran species. Palaoro AV; Muniz DG; Santos S J Morphol; 2020 Sep; 281(9):1098-1109. PubMed ID: 32681767 [TBL] [Abstract][Full Text] [Related]
18. Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle. MacLea KS; Abuhagr AM; Pitts NL; Covi JA; Bader BD; Chang ES; Mykles DL J Exp Biol; 2012 Feb; 215(Pt 4):590-604. PubMed ID: 22279066 [TBL] [Abstract][Full Text] [Related]
19. DEVELOPMENT OF THE DIMORPHIC CLAW CLOSER MUSCLES OF THE LOBSTER HOMARUS AMERICANUS. III. TRANSFORMATION TO DIMORPHIC MUSCLES IN JUVENILES. Govind CK; Lang F Biol Bull; 1978 Feb; 154(1):55-67. PubMed ID: 29323959 [TBL] [Abstract][Full Text] [Related]
20. Mechanical Resistance in Decapod Claw Denticles: Contribution of Structure and Composition. Rosen MN; Baran KA; Sison JN; Steffel BV; Long WC; Foy RJ; Smith KE; Aronson RB; Dickinson GH Acta Biomater; 2020 Jul; 110():196-207. PubMed ID: 32438112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]