BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 11327505)

  • 21. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insulation lifetime improvement of polyimide thin film neural implants.
    Ceyssens F; Puers R
    J Neural Eng; 2015 Oct; 12(5):054001. PubMed ID: 26269487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording.
    Mastrototaro JJ; Massoud HZ; Pilkington TC; Ideker RE
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):271-9. PubMed ID: 1555857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated wireless neural interface based on the Utah electrode array.
    Kim S; Bhandari R; Klein M; Negi S; Rieth L; Tathireddy P; Toepper M; Oppermann H; Solzbacher F
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity.
    Metz S; Bertsch A; Bertrand D; Renaud P
    Biosens Bioelectron; 2004 May; 19(10):1309-18. PubMed ID: 15046764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve.
    Boretius T; Badia J; Pascual-Font A; Schuettler M; Navarro X; Yoshida K; Stieglitz T
    Biosens Bioelectron; 2010 Sep; 26(1):62-9. PubMed ID: 20627510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two multichannel integrated circuits for neural recording and signal processing.
    Obeid I; Morizio JC; Moxon KA; Nicolelis MA; Wolf PD
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):255-8. PubMed ID: 12665041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations.
    MartĂ­nez Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):547-58. PubMed ID: 16532782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A three-dimensional microelectrode array for chronic neural recording.
    Hoogerwerf AC; Wise KD
    IEEE Trans Biomed Eng; 1994 Dec; 41(12):1136-46. PubMed ID: 7851915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-site incorporation of bioactive matrices into MEMS-based neural probes.
    Williams JC; Holecko MM; Massia SP; Rousche P; Kipke DR
    J Neural Eng; 2005 Dec; 2(4):L23-8. PubMed ID: 16317225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.