These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11327509)

  • 21. Power flow control based solely on slow feedback loop for heart pump applications.
    Wang B; Hu AP; Budgett D
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):279-86. PubMed ID: 23853149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a four-phase high frequency amplitude-stable power supply.
    Qihua Y
    Biomed Microdevices; 2005 Sep; 7(3):243-6. PubMed ID: 16133812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple remote-controlled power switch for internalized bioelectronic instrumentation.
    Varosi SM; Brigmon RL; Besch EL
    IEEE Trans Biomed Eng; 1989 Aug; 36(8):858-60. PubMed ID: 2759645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of integrated electronics unit for drive and control of undulation pump-left ventricular assist device.
    Okamoto E; Makino T; Inoue Y; Tanaka S; Yasuda T; Nakamura M; Saito I; Abe Y; Chinzei T; Isoyama T; Mochiizuki S; Imachi K; Mitamura Y
    Artif Organs; 2006 May; 30(5):403-5. PubMed ID: 16683960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Safe inductive power transmission to millimeter-sized implantable microelectronics devices.
    Ibrahim A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():817-20. PubMed ID: 26736387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.
    Kiani M; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3841-4. PubMed ID: 19963595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.
    Naresh P; Hitesh C; Patel A; Kolge T; Sharma A; Mittal KC
    Rev Sci Instrum; 2013 Aug; 84(8):084706. PubMed ID: 24007087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.
    Qianhong Chen ; Siu Chung Wong ; Tse CK; Xinbo Ruan
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):23-31. PubMed ID: 23853160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal position of the transmitter coil for wireless power transfer to the implantable device.
    Jinghui Jian ; Stanaćević M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6549-52. PubMed ID: 25571496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An implantable micropower command receiver for telemetry battery power switching.
    Sweeney JD; Leung A; Ko WH
    Biotelem Patient Monit; 1981; 8(3):173-9. PubMed ID: 7295932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward a fully integrated neurostimulator with inductive power recovery front-end.
    Mounaïm F; Sawan M
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):309-18. PubMed ID: 23853175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter.
    Ozeri S; Shmilovitz D; Singer S; Wang CC
    Ultrasonics; 2010 Jun; 50(7):666-74. PubMed ID: 20219226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An isolation power supply by phototransmission.
    Takahashi K; Izawa K; Morimoto T
    Front Med Biol Eng; 1992; 4(3):201-8. PubMed ID: 1419919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators.
    Ghovanloo M; Najafi K
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):97-105. PubMed ID: 15651568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.
    Abbas SM; Hannan MA; Samad SA; Hussain A
    Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.