BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11327734)

  • 1. Multiple mechanisms regulate expression of low temperature responsive (LOT) genes in Saccharomyces cerevisiae.
    Zhang L; Ohta A; Horiuchi H; Takagi M; Imai R
    Biochem Biophys Res Commun; 2001 May; 283(2):531-5. PubMed ID: 11327734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of mRNA differential display to investigate gene expression in thermotolerant cells of Saccharomyces cerevisiae.
    Gross C; Watson K
    Yeast; 1998 Mar; 14(5):431-42. PubMed ID: 9559551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three genes whose expression is induced by stress in Saccharomyces cerevisiae.
    Garay-Arroyo A; Covarrubias AA
    Yeast; 1999 Jul; 15(10A):879-92. PubMed ID: 10407268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.
    Jones DL; Petty J; Hoyle DC; Hayes A; Ragni E; Popolo L; Oliver SG; Stateva LI
    Physiol Genomics; 2003 Dec; 16(1):107-18. PubMed ID: 14570984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene.
    Messenguy F; Vierendeels F; Piérard A; Delbecq P
    Curr Genet; 2002 Jul; 41(4):224-31. PubMed ID: 12172963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1.
    Park YU; Hur H; Ka M; Kim J
    Eukaryot Cell; 2006 Dec; 5(12):2120-7. PubMed ID: 17041186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and physical interactions of Krr1p, a Saccharomyces cerevisiae nucleolar protein.
    Gromadka R; Karkusiewicz I; Rempoła B; Rytka J
    Acta Biochim Pol; 2004; 51(1):173-87. PubMed ID: 15094838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA protein interactions at the rRNA of Saccharomyces cerevisiae.
    Cioci F; Di Felice F; Chiani F; Camilloni G
    Ital J Biochem; 2007 Jun; 56(2):81-90. PubMed ID: 17722648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production.
    Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J
    J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA degradation in fission yeast mitochondria is stimulated by a member of a new family of proteins that are conserved in lower eukaryotes.
    Wiesenberger G; Speer F; Haller G; Bonnefoy N; Schleiffer A; Schafer B
    J Mol Biol; 2007 Mar; 367(3):681-91. PubMed ID: 17292401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway.
    Samanta MP; Tongprasit W; Sethi H; Chin CS; Stolc V
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4192-7. PubMed ID: 16537507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.
    Kitagaki H; Ito K; Shimoi H
    Eukaryot Cell; 2004 Oct; 3(5):1297-306. PubMed ID: 15470258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel cis-acting cysteine-responsive regulatory element of the gene for the high-affinity glutathione transporter of Saccharomyces cerevisiae.
    Miyake T; Kanayama M; Sammoto H; Ono B
    Mol Genet Genomics; 2002 Feb; 266(6):1004-11. PubMed ID: 11862495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae.
    Friberg M; von Rohr P; Gonnet G
    Yeast; 2004 Oct; 21(13):1083-93. PubMed ID: 15484285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CAMP is involved in transcriptional regulation of delta9-desaturase during Histoplasma capsulatum morphogenesis.
    Storlazzi A; Maresca B; Gargano S
    Mol Cell Biol Res Commun; 1999; 2(3):172-7. PubMed ID: 10662593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cDNA cloning and functional expression of alpha-glucosidase from Mortierella alliacea.
    Tanaka Y; Aki T; Ishihara K; Kawamoto S; Shigeta S; Ono K
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):202-9. PubMed ID: 12883865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae.
    Nakagawa Y; Sakumoto N; Kaneko Y; Harashima S
    Biochem Biophys Res Commun; 2002 Mar; 291(3):707-13. PubMed ID: 11855848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cisplatin upregulates Saccharomyces cerevisiae genes involved in iron homeostasis through activation of the iron insufficiency-responsive transcription factor Aft1.
    Kimura A; Ohashi K; Naganuma A
    J Cell Physiol; 2007 Feb; 210(2):378-84. PubMed ID: 17096368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two new genes down-regulated by alpha-factor.
    Seidel J; Tanner W
    Yeast; 1997 Jul; 13(9):809-17. PubMed ID: 9234669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.