BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 11327778)

  • 1. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin.
    Perálvarez-Marín A; Bourdelande JL; Querol E; Padrós E
    Mol Membr Biol; 2006; 23(2):127-35. PubMed ID: 16754356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow alpha helix formation during folding of a membrane protein.
    Riley ML; Wallace BA; Flitsch SL; Booth PJ
    Biochemistry; 1997 Jan; 36(1):192-6. PubMed ID: 8993333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy.
    López-Llano J; Campos LA; Sancho J
    Proteins; 2006 Aug; 64(3):769-78. PubMed ID: 16755589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity effects in the binding of all-trans retinal to bacterio-opsin.
    Friedman N; Ottolenghi M; Sheves M
    Biochemistry; 2003 Sep; 42(38):11281-8. PubMed ID: 14503878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies.
    Sankararamakrishnan R; Vishveshwara S
    Proteins; 1993 Jan; 15(1):26-41. PubMed ID: 8451238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin.
    Chou KC; Carlacci L; Maggiora GM; Parodi LA; Schulz MW
    Protein Sci; 1992 Jun; 1(6):810-27. PubMed ID: 1304922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proline substitutions are not easily accommodated in a membrane protein.
    Yohannan S; Yang D; Faham S; Boulting G; Whitelegge J; Bowie JU
    J Mol Biol; 2004 Jul; 341(1):1-6. PubMed ID: 15312757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state.
    Nishikawa T; Murakami M; Kouyama T
    J Mol Biol; 2005 Sep; 352(2):319-28. PubMed ID: 16084526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-helical hydrogen bonds are essential elements for intra-protein signal transduction: the role of Asp115 in bacteriorhodopsin transport function.
    Perálvarez-Marín A; Lórenz-Fonfría VA; Bourdelande JL; Querol E; Kandori H; Padrós E
    J Mol Biol; 2007 May; 368(3):666-76. PubMed ID: 17367807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A
    Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of bacteriorhodopsin at 1.55 A resolution.
    Luecke H; Schobert B; Richter HT; Cartailler JP; Lanyi JK
    J Mol Biol; 1999 Aug; 291(4):899-911. PubMed ID: 10452895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rate of isomerisation of peptidyl-proline bonds as a probe for interactions in the physiological denatured state of chymotrypsin inhibitor 2.
    Tan YJ; Oliveberg M; Otzen DE; Fersht AR
    J Mol Biol; 1997 Jun; 269(4):611-22. PubMed ID: 9217264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C; Dyson HJ; Wright PE
    J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.