These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11327799)

  • 41. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm.
    Walhout AJ; Boulton SJ; Vidal M
    Yeast; 2000 Jun; 17(2):88-94. PubMed ID: 10900455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The application of yeast hybrid systems in protein interaction analysis].
    Zhu ZX; Yu ZM; Taylor JL; Wu YH; Ni J
    Mol Biol (Mosk); 2016; 50(5):751-759. PubMed ID: 27830677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SRYTH: A New Yeast Two-Hybrid Method.
    Mallick J; Jansen G; Wu C; Whiteway M
    Methods Mol Biol; 2016; 1356():31-41. PubMed ID: 26519063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Membrane-based yeast two-hybrid system to detect protein interactions.
    Lentze N; Auerbach D
    Curr Protoc Protein Sci; 2008 May; Chapter 19():Unit 19.17. PubMed ID: 18491299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Guilt-by-association goes global.
    Oliver S
    Nature; 2000 Feb; 403(6770):601-3. PubMed ID: 10688178
    [No Abstract]   [Full Text] [Related]  

  • 46. Yeast genetic methods for the detection of membrane protein interactions: potential use in drug discovery.
    Fetchko M; Auerbach D; Stagljar I
    BioDrugs; 2003; 17(6):413-24. PubMed ID: 14614764
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ras recruitment system, a novel approach to the study of protein-protein interactions.
    Broder YC; Katz S; Aronheim A
    Curr Biol; 1998 Oct; 8(20):1121-4. PubMed ID: 9778531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The yeast two-hybrid system for studying protein-protein interactions.
    Luban J; Goff SP
    Curr Opin Biotechnol; 1995 Feb; 6(1):59-64. PubMed ID: 7894083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a membrane-anchored ligand and receptor yeast two-hybrid system for ligand-receptor interaction identification.
    Li J; Gao J; Han L; Zhang Y; Guan W; Zhou L; Yu Y; Han W
    Sci Rep; 2016 Oct; 6():35631. PubMed ID: 27762338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Yeast Hybrid System to Identify Proteins Binding to Small Molecules.
    Wang Y; Letham DS; John PCL; Zhang R
    Methods Mol Biol; 2018; 1794():225-234. PubMed ID: 29855960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comprehensive two-hybrid analysis to explore the yeast protein interactome.
    Ito T; Chiba T; Ozawa R; Yoshida M; Hattori M; Sakaki Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4569-74. PubMed ID: 11283351
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Networking proteins in yeast.
    Hazbun TR; Fields S
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4277-8. PubMed ID: 11296274
    [No Abstract]   [Full Text] [Related]  

  • 53. Protein recruitment systems for the analysis of protein-protein interactions.
    Aronheim A
    Biochem Pharmacol; 2000 Oct; 60(8):1009-13. PubMed ID: 11007935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yeast forward and reverse 'n'-hybrid systems.
    Vidal M; Legrain P
    Nucleic Acids Res; 1999 Feb; 27(4):919-29. PubMed ID: 9927722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: potential and limitations.
    Cottier S; Mönig T; Wang Z; Svoboda J; Boland W; Kaiser M; Kombrink E
    Front Plant Sci; 2011; 2():101. PubMed ID: 22639623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional characterization of SAMD9, a protein deficient in normophosphatemic familial tumoral calcinosis.
    Hershkovitz D; Gross Y; Nahum S; Yehezkel S; Sarig O; Uitto J; Sprecher E
    J Invest Dermatol; 2011 Mar; 131(3):662-9. PubMed ID: 21160498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress.
    Cao G; Lee KP; van der Wijst J; de Graaf M; van der Kemp A; Bindels RJ; Hoenderop JG
    J Biol Chem; 2010 Aug; 285(34):26081-7. PubMed ID: 20584906
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B.
    Wang B; Pelletier J; Massaad MJ; Herscovics A; Shore GC
    Mol Cell Biol; 2004 Apr; 24(7):2767-78. PubMed ID: 15024066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein recruitment systems for the analysis of protein +/- protein interactions.
    Aronheim A
    Methods; 2001 May; 24(1):29-34. PubMed ID: 11327799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Saccharomyces cerevisiae Ras1p and chimaeric constructs of Ras proteins reveals the hypervariable region and farnesylation as critical elements in the adenylyl cyclase signaling pathway.
    Créchet JB; Cool RH; Jacquet E; Lallemand JY
    Biochemistry; 2003 Dec; 42(50):14903-12. PubMed ID: 14674766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.