BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11327834)

  • 41. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics.
    Uter NT; Perona JJ
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14396-401. PubMed ID: 15452355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases.
    Lamichhane TN; Blewett NH; Maraia RJ
    RNA; 2011 Oct; 17(10):1846-57. PubMed ID: 21873461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of the zinc(II) center in protein farnesyltransferase by mutagenesis of the zinc(II) ligands.
    Harris CM; Derdowski AM; Poulter CD
    Biochemistry; 2002 Aug; 41(33):10554-62. PubMed ID: 12173942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element.
    Hawko SA; Francklyn CS
    Biochemistry; 2001 Feb; 40(7):1930-6. PubMed ID: 11329259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme.
    Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME
    Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation of methionine by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH; Brunie S
    Biochemistry; 1991 Oct; 30(40):9569-75. PubMed ID: 1911742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. tRNA hopping: effects of mutant tRNAs.
    O'Connor M
    Biochim Biophys Acta; 2003 Oct; 1630(1):41-6. PubMed ID: 14580678
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Dec; 39(51):16244-51. PubMed ID: 11123955
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro study of E. coli tRNA identity elements.
    Tamura T; Asahara H; Nameki N; Himeno H; Hasegawa T; Shimizu M
    Nucleic Acids Symp Ser; 1992; (27):143-4. PubMed ID: 1283903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular recognition of tRNA by tRNA pseudouridine 55 synthase.
    Gu X; Yu M; Ivanetich KM; Santi DV
    Biochemistry; 1998 Jan; 37(1):339-43. PubMed ID: 9425055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
    Stehlin C; Heacock DH; Liu H; Musier-Forsyth K
    Biochemistry; 1997 Mar; 36(10):2932-8. PubMed ID: 9062123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes.
    Amarantos I; Kalpaxis DL
    Nucleic Acids Res; 2000 Oct; 28(19):3733-42. PubMed ID: 11000265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity.
    Chuawong P; Hendrickson TL
    Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA.
    Kim HY; Pelka H; Brunie S; Schulman LH
    Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase.
    Peterson ET; Uhlenbeck OC
    Biochemistry; 1992 Oct; 31(42):10380-9. PubMed ID: 1420156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Importance of the conserved nucleotides around the tRNA-like structure of Escherichia coli transfer-messenger RNA for protein tagging.
    Hanawa-Suetsugu K; Bordeau V; Himeno H; Muto A; Felden B
    Nucleic Acids Res; 2001 Nov; 29(22):4663-73. PubMed ID: 11713316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs.
    Hunter SE; Spremulli LL
    RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.