BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11327858)

  • 1. Solution structure of the p53 regulatory domain of the p19Arf tumor suppressor protein.
    DiGiammarino EL; Filippov I; Weber JD; Bothner B; Kriwacki RW
    Biochemistry; 2001 Feb; 40(8):2379-86. PubMed ID: 11327858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the molecular basis of Arf and Hdm2 interactions.
    Bothner B; Lewis WS; DiGiammarino EL; Weber JD; Bothner SJ; Kriwacki RW
    J Mol Biol; 2001 Nov; 314(2):263-77. PubMed ID: 11718560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex.
    Weber JD; Kuo ML; Bothner B; DiGiammarino EL; Kriwacki RW; Roussel MF; Sherr CJ
    Mol Cell Biol; 2000 Apr; 20(7):2517-28. PubMed ID: 10713175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo.
    Sivakolundu SG; Nourse A; Moshiach S; Bothner B; Ashley C; Satumba J; Lahti J; Kriwacki RW
    J Mol Biol; 2008 Dec; 384(1):240-54. PubMed ID: 18809412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization.
    Rizos H; Darmanian AP; Mann GJ; Kefford RF
    Oncogene; 2000 Jun; 19(26):2978-85. PubMed ID: 10871849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleolar p14(ARF) overexpression in Reed-Sternberg cells in Hodgkin's lymphoma: absence of p14(ARF)/Hdm2 complexes is associated with expression of alternatively spliced Hdm2 transcripts.
    García JF; Villuendas R; Sánchez-Beato M; Sánchez-Aguilera A; Sánchez L; Prieto I; Piris MA
    Am J Pathol; 2002 Feb; 160(2):569-78. PubMed ID: 11839577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARF function does not require p53 stabilization or Mdm2 relocalization.
    Korgaonkar C; Zhao L; Modestou M; Quelle DE
    Mol Cell Biol; 2002 Jan; 22(1):196-206. PubMed ID: 11739734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple domains of the mouse p19ARF tumor suppressor are involved in p53-independent apoptosis.
    Matsuoka M; Kurita M; Sudo H; Mizumoto K; Nishimoto I; Ogata E
    Biochem Biophys Res Commun; 2003 Feb; 301(4):1000-10. PubMed ID: 12589812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel nucleophosmin-interaction motif in the tumor suppressor p14arf.
    Luchinat E; Chiarella S; Franceschini M; Di Matteo A; Brunori M; Banci L; Federici L
    FEBS J; 2018 Mar; 285(5):832-847. PubMed ID: 29283500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-terminal polyubiquitination and degradation of the Arf tumor suppressor.
    Kuo ML; den Besten W; Bertwistle D; Roussel MF; Sherr CJ
    Genes Dev; 2004 Aug; 18(15):1862-74. PubMed ID: 15289458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF.
    Lee C; Smith BA; Bandyopadhyay K; Gjerset RA
    Cancer Res; 2005 Nov; 65(21):9834-42. PubMed ID: 16267006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Short N-Terminal Repeats of Transcription Termination Factor 1 Contain Semi-Redundant Nucleolar Localization Signals and P19-ARF Tumor Suppressor Binding Sites.
    Boutin J; Lessard F; Tremblay MG; Moss T
    Yale J Biol Med; 2019 Sep; 92(3):385-396. PubMed ID: 31543703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitination of, and sumoylation by, the Arf tumor suppressor.
    den Besten W; Kuo ML; Tago K; Williams RT; Sherr CJ
    Isr Med Assoc J; 2006 Apr; 8(4):249-51. PubMed ID: 16671360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor.
    Chen D; Kon N; Li M; Zhang W; Qin J; Gu W
    Cell; 2005 Jul; 121(7):1071-83. PubMed ID: 15989956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function.
    Kamijo T; van de Kamp E; Chong MJ; Zindy F; Diehl JA; Sherr CJ; McKinnon PJ
    Cancer Res; 1999 May; 59(10):2464-9. PubMed ID: 10344759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of p53 binding to hdm2(1-126): effects of phosphorylation and p53 peptide length.
    Lai Z; Auger KR; Manubay CM; Copeland RA
    Arch Biochem Biophys; 2000 Sep; 381(2):278-84. PubMed ID: 11032416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aib-based peptide backbone as scaffolds for helical peptide mimics.
    Banerjee R; Basu G; Chène P; Roy S
    J Pept Res; 2002 Aug; 60(2):88-94. PubMed ID: 12102721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central region of HDM2 provides a second binding site for p53.
    Yu GW; Rudiger S; Veprintsev D; Freund S; Fernandez-Fernandez MR; Fersht AR
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1227-32. PubMed ID: 16432196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers.
    Okubo S; Hara F; Tsuchida Y; Shimotakahara S; Suzuki S; Hatanaka H; Yokoyama S; Tanaka H; Yasuda H; Shindo H
    J Biol Chem; 2004 Jul; 279(30):31455-61. PubMed ID: 15133049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the C-terminus of Ca2+-bound rat S100B (beta beta) upon binding to a peptide derived from the C-terminal regulatory domain of p53.
    Rustandi RR; Baldisseri DM; Drohat AC; Weber DJ
    Protein Sci; 1999 Sep; 8(9):1743-51. PubMed ID: 10493575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.