These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 11327983)

  • 1. Standing optical phonons in finite semiconductor superlattices studied by resonant Raman scattering in a double microcavity.
    Fainstein A; Trigo M; Oliva D; Jusserand B; Freixanet T; Thierry-Mieg V
    Phys Rev Lett; 2001 Apr; 86(15):3411-4. PubMed ID: 11327983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement of acoustical vibrations in a semiconductor planar phonon cavity.
    Trigo M; Bruchhausen A; Fainstein A; Jusserand B; Thierry-Mieg V
    Phys Rev Lett; 2002 Nov; 89(22):227402. PubMed ID: 12485103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces.
    Milekhin A; Yeryukov N; Toropov A; Dmitriev D; Sheremet E; Zahn DR
    Nanoscale Res Lett; 2012 Aug; 7(1):476. PubMed ID: 22916827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection rules and dispersion of GaAs/AlAs multiple-quantum-well optical phonons studied by Raman scattering in right-angle, forward, and backscattering in-plane geometries.
    Fainstein A; Etchegoin P; Chamberlain MP; Cardona M; Tötemeyer K; Eberl K
    Phys Rev B Condens Matter; 1995 May; 51(20):14448-14458. PubMed ID: 9978376
    [No Abstract]   [Full Text] [Related]  

  • 5. Polariton-driven phonon laser.
    Chafatinos DL; Kuznetsov AS; Anguiano S; Bruchhausen AE; Reynoso AA; Biermann K; Santos PV; Fainstein A
    Nat Commun; 2020 Sep; 11(1):4552. PubMed ID: 32917874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
    Hofmann F; Garg J; Maznev AA; Jandl A; Bulsara M; Fitzgerald EA; Chen G; Nelson KA
    J Phys Condens Matter; 2013 Jul; 25(29):295401. PubMed ID: 23817884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-order Raman scattering by confined optical phonons and interface vibrational modes in GaAs-AlAs superlattices.
    Sood AK; Menéndez J; Cardona M; Ploog K
    Phys Rev B Condens Matter; 1985 Jul; 32(2):1412-1414. PubMed ID: 9937179
    [No Abstract]   [Full Text] [Related]  

  • 8. Coherent generation of acoustic phonons in an optical microcavity.
    Lanzillotti-Kimura ND; Fainstein A; Huynh A; Perrin B; Jusserand B; Miard A; Lemaître A
    Phys Rev Lett; 2007 Nov; 99(21):217405. PubMed ID: 18233256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled electron-phonon modes in optically pumped resonant intersubband lasers.
    Liu HC; Song CY; Wasilewski ZR; SpringThorpe AJ; Cao JC; Dharma-Wardana C; Aers GC; Lockwood DJ; Gupta JA
    Phys Rev Lett; 2003 Feb; 90(7):077402. PubMed ID: 12633270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Charge and Spin Order in PrNiO_{3} Thin Films and Superlattices.
    Hepting M; Minola M; Frano A; Cristiani G; Logvenov G; Schierle E; Wu M; Bluschke M; Weschke E; Habermeier HU; Benckiser E; Le Tacon M; Keimer B
    Phys Rev Lett; 2014 Nov; 113(22):227206. PubMed ID: 25494088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of quantum confinement on lifetime of anharmonic decay of optical phonons in semiconductor nanostructures.
    Datta D; Krishnababu K; Stroscio MA; Dutta M
    J Phys Condens Matter; 2018 Sep; 30(35):355302. PubMed ID: 29972139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice dynamics and Raman scattering by phonons of GaAs/AlAs(001) superlattices.
    Berdekas D; Ves S
    J Phys Condens Matter; 2009 Jul; 21(27):275405. PubMed ID: 21828489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic phonon modes and dispersion relations of nanowire superlattices.
    Mizuno S; Nishiguchi N
    J Phys Condens Matter; 2009 May; 21(19):195303. PubMed ID: 21825477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon-induced polariton superlattices.
    de Lima MM; van der Poel M; Santos PV; Hvam JM
    Phys Rev Lett; 2006 Jul; 97(4):045501. PubMed ID: 16907587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface-phonon dispersion and confined-optical-mode selection rules of GaAs/AlAs superlattices studied by micro-Raman spectroscopy.
    Hessmer R; Huber A; Egeler T; Haines M; Tränkle G; Weimann G; Abstreiter G
    Phys Rev B Condens Matter; 1992 Aug; 46(7):4071-4076. PubMed ID: 10004136
    [No Abstract]   [Full Text] [Related]  

  • 18. High-order resonant Raman scattering by combinations and overtones of interface phonons in GaAs-AlAs short-period superlattices.
    Meynadier MH; Finkman E; Sturge MD; Worlock JM; Tamargo MC
    Phys Rev B Condens Matter; 1987 Feb; 35(5):2517-2520. PubMed ID: 9941717
    [No Abstract]   [Full Text] [Related]  

  • 19. Strain evolution and confinement effect in InAs/AlAs short-period superlattices studied by Raman spectroscopy.
    Zhao Y; Lu K; Yao J; Ning J; Chen B; Lu H; Zheng C
    Sci Rep; 2023 Jan; 13(1):123. PubMed ID: 36599857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals.
    Guc M; Levcenko S; Bodnar IV; Izquierdo-Roca V; Fontane X; Volkova LV; Arushanov E; Pérez-Rodríguez A
    Sci Rep; 2016 Jan; 6():19414. PubMed ID: 26776727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.