These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11328154)

  • 1. Phase diagram for the Winfree model of coupled nonlinear oscillators.
    Ariaratnam JT; Strogatz SH
    Phys Rev Lett; 2001 May; 86(19):4278-81. PubMed ID: 11328154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singular unlocking transition in the Winfree model of coupled oscillators.
    Quinn DD; Rand RH; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036218. PubMed ID: 17500780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization scenarios in the Winfree model of coupled oscillators.
    Gallego R; Montbrió E; Pazó D
    Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase diagram of a generalized Winfree model.
    Giannuzzi F; Marinazzo D; Nardulli G; Pellicoro M; Stramaglia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051104. PubMed ID: 17677019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization in populations of globally coupled oscillators with inertial effects.
    Acebron JA; Bonilla LL; Spigler R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3437-54. PubMed ID: 11088845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of phase-dependent influence function in the Winfree model of coupled oscillators.
    Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2021 Dec; 104(6-1):064206. PubMed ID: 35030866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram for the Kuramoto model with van Hemmen interactions.
    Kloumann IM; Lizarraga IM; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012904. PubMed ID: 24580294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial locking in phase-oscillator populations with heterogenous coupling.
    Xu C; Wu Y; Zheng Z; Tang L
    Chaos; 2022 Jun; 32(6):063106. PubMed ID: 35778151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrainment degree of globally coupled Winfree oscillators under external forcing.
    Zhang Y; Hoveijn I; Efstathiou K
    Chaos; 2022 Oct; 32(10):103121. PubMed ID: 36319288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability diagram for the forced Kuramoto model.
    Childs LM; Strogatz SH
    Chaos; 2008 Dec; 18(4):043128. PubMed ID: 19123638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Structured Networks of Winfree Oscillators.
    Laing CR; Bläsche C; Means S
    Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies.
    Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011104. PubMed ID: 16486119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repulsive synchronization in an array of phase oscillators.
    Tsimring LS; Rulkov NF; Larsen ML; Gabbay M
    Phys Rev Lett; 2005 Jul; 95(1):014101. PubMed ID: 16090619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Phase Coupling Between Two Spin-Torque Nano-Oscillators with an External Source.
    Li Y; de Milly X; Abreu Araujo F; Klein O; Cros V; Grollier J; de Loubens G
    Phys Rev Lett; 2017 Jun; 118(24):247202. PubMed ID: 28665656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling.
    Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.