These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11328154)

  • 21. Experiments on oscillator ensembles with global nonlinear coupling.
    Temirbayev AA; Zhanabaev ZZh; Tarasov SB; Ponomarenko VI; Rosenblum M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):015204. PubMed ID: 22400613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase and amplitude dynamics of nonlinearly coupled oscillators.
    Cudmore P; Holmes CA
    Chaos; 2015 Feb; 25(2):023110. PubMed ID: 25725646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.
    Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-locking swallows in coupled oscillators with delayed feedback.
    Popovych OV; Krachkovskyi V; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046203. PubMed ID: 21230361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase response curves elucidating the dynamics of coupled oscillators.
    Granada A; Hennig RM; Ronacher B; Kramer A; Herzel H
    Methods Enzymol; 2009; 454():1-27. PubMed ID: 19216921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bifurcation diagram of coupled thermoacoustic chaotic oscillators.
    Delage R; Takayama Y; Biwa T
    Chaos; 2018 Aug; 28(8):083125. PubMed ID: 30180631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise.
    Gupta S; Campa A; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022123. PubMed ID: 25353438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics.
    Kosevich YA; Manevitch LI; Savin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode locking in systems of globally coupled phase oscillators.
    Eydam S; Wolfrum M
    Phys Rev E; 2017 Nov; 96(5-1):052205. PubMed ID: 29347775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Entanglement tongue and quantum synchronization of disordered oscillators.
    Lee TE; Chan CK; Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022913. PubMed ID: 25353551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive coupling and enhanced synchronization in coupled phase oscillators.
    Ren Q; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016207. PubMed ID: 17677543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energetics of synchronization in coupled oscillators rotating on circular trajectories.
    Izumida Y; Kori H; Seifert U
    Phys Rev E; 2016 Nov; 94(5-1):052221. PubMed ID: 27967039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synchronization dynamics in diverse ensemble of noisy phase oscillators with asynchronous phase updates.
    Belan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062910. PubMed ID: 26764777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-frequency-two-coupling model of coupled oscillators.
    Hong H; Martens EA
    Chaos; 2021 Aug; 31(8):083124. PubMed ID: 34470243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchronization of two interacting populations of oscillators.
    Montbrió E; Kurths J; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056125. PubMed ID: 15600710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Onset of synchronization in complex networks of noisy oscillators.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronization between two weakly coupled delay-line oscillators.
    Levy EC; Horowitz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformists and contrarians in a Kuramoto model with identical natural frequencies.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.