BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11328709)

  • 1. Physicochemical and graph theoretical descriptors in developmental toxicity SAR: a comparative study.
    Macina OT; Sussman NB; Claycamp HG; Grant SG
    SAR QSAR Environ Res; 2001 Feb; 11(5-6):345-62. PubMed ID: 11328709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search of a topological pattern to evaluate toxicity of heterogeneous compounds.
    García-Domenech R; de Julián-Ortiz JV; Duart MJ; García-Torrecillas JM; Antón-Fos GM; Ríos-Santamarina I; De Gregorio-Alapont C; Gálvez J
    SAR QSAR Environ Res; 2001; 12(1-2):237-54. PubMed ID: 11697058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decision tree SAR models for developmental toxicity based on an FDA/TERIS database.
    Sussman NB; Arena VC; Yu S; Mazumdar S; Thampatty BP
    SAR QSAR Environ Res; 2003 Apr; 14(2):83-96. PubMed ID: 12747568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity.
    Hewitt M; Ellison CM; Enoch SJ; Madden JC; Cronin MT
    Reprod Toxicol; 2010 Aug; 30(1):147-60. PubMed ID: 20006701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models.
    Arena VC; Sussman NB; Mazumdar S; Yu S; Macina OT
    SAR QSAR Environ Res; 2004 Feb; 15(1):1-18. PubMed ID: 15113065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust structure-activity relationship (SAR) model for esters that cause skin irritation in humans.
    Smith JS; Macina OT; Sussman NB; Luster MI; Karol MH
    Toxicol Sci; 2000 May; 55(1):215-22. PubMed ID: 10788576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Chernoff/Kavlock test for developmental toxicity. Proceedings of the Workshop on the Chernoff/Kavlock Short Term In Vivo Developmental Toxicity Test. Cincinnati, Ohio, May 20 and 21, 1986.
    Teratog Carcinog Mutagen; 1987; 7(1):1-127. PubMed ID: 2884736
    [No Abstract]   [Full Text] [Related]  

  • 8. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors.
    Matter H
    J Med Chem; 1997 Apr; 40(8):1219-29. PubMed ID: 9111296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental toxicity prediction.
    Venkatapathy R; Wang NC
    Methods Mol Biol; 2013; 930():305-40. PubMed ID: 23086848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An indirect assessment of the Chernoff/Kavlock assay.
    Palmer AK
    Teratog Carcinog Mutagen; 1987; 7(1):95-106. PubMed ID: 2884748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database.
    Matthews EJ; Kruhlak NL; Daniel Benz R; Contrera JF
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):115-35. PubMed ID: 17207562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data.
    Sipes NS; Martin MT; Reif DM; Kleinstreuer NC; Judson RS; Singh AV; Chandler KJ; Dix DJ; Kavlock RJ; Knudsen TB
    Toxicol Sci; 2011 Nov; 124(1):109-27. PubMed ID: 21873373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals.
    Matthews EJ; Kruhlak NL; Daniel Benz R; Ivanov J; Klopman G; Contrera JF
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):136-55. PubMed ID: 17175082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall molecular descriptors. 3. Overall Zagreb indices.
    Bonchev D; Trinajstić N
    SAR QSAR Environ Res; 2001; 12(1-2):213-36. PubMed ID: 11697057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: development of a novel database.
    Cronin MT; Netzeva TI; Dearden JC; Edwards R; Worgan AD
    Chem Res Toxicol; 2004 Apr; 17(4):545-54. PubMed ID: 15089097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative study of electrostatic and steric effects on physicochemical property and biological activity.
    Cheng YY; Yuan H
    J Mol Graph Model; 2006 Jan; 24(4):219-26. PubMed ID: 16182578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of developmental toxicity in hamsters.
    Gómez J; Macina OT; Mattison DR; Zhang YP; Klopman G; Rosenkranz HS
    Teratology; 1999 Oct; 60(4):190-205. PubMed ID: 10508972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistical approach towards the derivation of predictive gene sets for potency ranking of chemicals in the mouse embryonic stem cell test.
    Schulpen SH; Pennings JL; Tonk EC; Piersma AH
    Toxicol Lett; 2014 Mar; 225(3):342-9. PubMed ID: 24480513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting antitrichomonal activity: a computational screening using atom-based bilinear indices and experimental proofs.
    Marrero-Ponce Y; Meneses-Marcel A; Castillo-Garit JA; Machado-Tugores Y; Escario JA; Barrio AG; Pereira DM; Nogal-Ruiz JJ; Arán VJ; Martínez-Fernández AR; Torrens F; Rotondo R; Ibarra-Velarde F; Alvarado YJ
    Bioorg Med Chem; 2006 Oct; 14(19):6502-24. PubMed ID: 16875830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.