BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11329130)

  • 21. Remodeling of an identified motoneuron during metamorphosis: hormonal influences on the growth of dendrites and axon terminals.
    Knittel LM; Kent KS
    J Neurobiol; 2005 May; 63(2):106-25. PubMed ID: 15702475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae.
    Johnston RM; Levine RB
    Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sex-specific neuronal respecification during the metamorphosis of the genital segments of the tobacco hornworm moth Manduca sexta.
    Thorn RS; Truman JW
    J Comp Neurol; 1989 Jun; 284(4):489-503. PubMed ID: 2768548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurons and ecdysteroids promote the proliferation of myogenic cells cultured from the developing adult legs of Manduca sexta.
    Luedeman R; Levine RB
    Dev Biol; 1996 Jan; 173(1):51-68. PubMed ID: 8575638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segment-specific retention of a larval neuromuscular system and its role in a new, rhythmic, pupal motor pattern in Manduca sexta.
    Sandstrom DJ; Weeks JC
    J Comp Physiol A; 1998 Sep; 183(3):283-302. PubMed ID: 9763701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural mechanisms of behavioral plasticity: metamorphosis and learning in Manduca sexta.
    Weeks JC; Jacobs GA; Pierce JT; Sandstrom DJ; Streichert LC; Trimmer BA; Wiel DE; Wood ER
    Brain Behav Evol; 1997; 50 Suppl 1():69-80. PubMed ID: 9217994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decreased monosynaptic sensory input to an identified motoneuron is associated with steroid-mediated dendritic regression during metamorphosis in Manduca sexta.
    Streichert LC; Weeks JC
    J Neurosci; 1995 Feb; 15(2):1484-95. PubMed ID: 7869112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecdysteroid control of ionic current development in Manduca sexta motoneurons.
    Grünewald B; Levine RB
    J Neurobiol; 1998 Nov; 37(2):211-23. PubMed ID: 9805268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steroid and neuronal regulation of ecdysone receptor expression during metamorphosis of muscle in the moth, Manduca sexta.
    Hegstrom CD; Riddiford LM; Truman JW
    J Neurosci; 1998 Mar; 18(5):1786-94. PubMed ID: 9465003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respecified larval proleg and body wall muscles circulate hemolymph in developing wings of Manduca sexta pupae.
    Lubischer JL; Verhegge LD; Weeks JC
    J Exp Biol; 1999 Apr; 202(Pt 7):787-96. PubMed ID: 10069968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postembryonic neurogenesis in the central nervous system of the tobacco hornworm, Manduca sexta. III. Spatial and temporal patterns of proliferation.
    Booker R; Babashak J; Kim JB
    J Neurobiol; 1996 Feb; 29(2):233-48. PubMed ID: 8821179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotory behavior in the hawkmoth Manduca sexta: kinematic and electromyographic analyses of the thoracic legs in larvae and adults.
    Johnston RM; Levine RB
    J Exp Biol; 1996 Apr; 199(Pt 4):759-74. PubMed ID: 8788085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sexual differentiation in the CNS of the moth, Manduca sexta. II. Target dependence for the survival of the imaginal midline neurons.
    Thorn RS; Truman JW
    J Neurobiol; 1994 Sep; 25(9):1054-66. PubMed ID: 7815063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postembryonic development of centrally generated flight motor patterns in the hawkmoth, Manduca sexta.
    Vierk R; Duch C; Pflüger HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jan; 196(1):37-50. PubMed ID: 19924416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Octopod, a homeotic mutation of the moth Manduca sexta, affects development of both mesodermal and ectodermal structures.
    Miles CI; Booker R
    Dev Biol; 1993 Jan; 155(1):147-60. PubMed ID: 8093235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.
    Banerjee S; Toral M; Siefert M; Conway D; Dorr M; Fernandes J
    Dev Neurobiol; 2016 Dec; 76(12):1387-1416. PubMed ID: 27168166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The adult abdominal neuromuscular junction of Drosophila: a model for synaptic plasticity.
    Hebbar S; Hall RE; Demski SA; Subramanian A; Fernandes JJ
    J Neurobiol; 2006 Sep; 66(10):1140-55. PubMed ID: 16838368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synapse loss and axon retraction in response to local muscle degeneration.
    Hegstrom CD; Truman JW
    J Neurobiol; 1996 Oct; 31(2):175-88. PubMed ID: 8885199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for fasciclin II in the guidance of neuronal migration.
    Wright JW; Snyder MA; Schwinof KM; Combes S; Copenhaver PF
    Development; 1999 Jun; 126(14):3217-28. PubMed ID: 10375511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural control of leg movements in a metamorphic insect: persistence of larval leg motor neurons to innervate the adult legs of Manduca sexta.
    Kent KS; Levine RB
    J Comp Neurol; 1988 Oct; 276(1):30-43. PubMed ID: 3192763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.