BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11329176)

  • 1. Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant.
    Compagno C; Brambilla L; Capitanio D; Boschi F; Ranzi BM; Porro D
    Yeast; 2001 May; 18(7):663-70. PubMed ID: 11329176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis.
    Capitanio D; Merico A; Ranzi BM; Compagno C
    Res Microbiol; 2002 Nov; 153(9):593-8. PubMed ID: 12455707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae.
    Compagno C; Boschi F; Ranzi BM
    Biotechnol Prog; 1996; 12(5):591-5. PubMed ID: 8879153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-labelling data.
    Kleijn RJ; Geertman JM; Nfor BK; Ras C; Schipper D; Pronk JT; Heijnen JJ; van Maris AJ; van Winden WA
    FEMS Yeast Res; 2007 Mar; 7(2):216-31. PubMed ID: 17132142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted.
    Diderich JA; Raamsdonk LM; Kruckeberg AL; Berden JA; Van Dam K
    Appl Environ Microbiol; 2001 Apr; 67(4):1587-93. PubMed ID: 11282609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis.
    Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of glycerol production in Saccharomyces cerevisiae.
    Overkamp KM; Bakker BM; Kötter P; Luttik MA; Van Dijken JP; Pronk JT
    Appl Environ Microbiol; 2002 Jun; 68(6):2814-21. PubMed ID: 12039737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes.
    Götz R; Schlüter E; Shoham G; Zimmermann FK
    Yeast; 1999 Nov; 15(15):1619-29. PubMed ID: 10572259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae.
    Jung JY; Choi ES; Oh MK
    J Microbiol Biotechnol; 2008 Nov; 18(11):1797-802. PubMed ID: 19047824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae.
    Vagabov VM; Trilisenko LV; Kulakovskaya TV; Kulaev IS
    FEMS Yeast Res; 2008 Sep; 8(6):877-82. PubMed ID: 18647178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.
    Raamsdonk LM; Diderich JA; Kuiper A; van Gaalen M; Kruckeberg AL; Berden JA; Van Dam K
    Yeast; 2001 Aug; 18(11):1023-33. PubMed ID: 11481673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the CgTPI gene encoding triose phosphate isomerase of Candida glycerinogenes inhibits the biosynthesis of glycerol.
    Yongguang Z; Wei S; Zhiming R; Huiying F; Jian Z
    Curr Microbiol; 2007 Aug; 55(2):147-51. PubMed ID: 17619100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, nucleotide sequence, and physiological relevance of the gene encoding triose phosphate isomerase from Kluyveromyces lactis.
    Compagno C; Boschi F; Daleffe A; Porro D; Ranzi BM
    Appl Environ Microbiol; 1999 Sep; 65(9):4216-9. PubMed ID: 10473437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae.
    de Jongh WA; Bro C; Ostergaard S; Regenberg B; Olsson L; Nielsen J
    Biotechnol Bioeng; 2008 Oct; 101(2):317-26. PubMed ID: 18421797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii.
    Merico A; Rodrigues F; Côrte-Real M; Porro D; Ranzi BM; Compagno C
    Yeast; 2001 Jun; 18(9):775-80. PubMed ID: 11427959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.