These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11329338)

  • 1. Universal crossover from band to hopping conduction in molecular organic semiconductors.
    Schön JH; Kloc C; Batlogg B
    Phys Rev Lett; 2001 Apr; 86(17):3843-6. PubMed ID: 11329338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified theory for charge-carrier transport in organic crystals.
    Cheng YC; Silbey RJ
    J Chem Phys; 2008 Mar; 128(11):114713. PubMed ID: 18361607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier Induced Hopping to Band Conduction in Pentacene.
    Rani V; Kumar P; Sharma A; Yadav S; Singh B; Ray N; Ghosh S
    Sci Rep; 2019 Dec; 9(1):20193. PubMed ID: 31882781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dichotomy between the band and hopping transport in organic crystals: insights from experiments.
    Yavuz I
    Phys Chem Chem Phys; 2017 Oct; 19(38):25819-25828. PubMed ID: 28932847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Surface Hopping Approach to Model the Crossover from Hopping to Band-like Transport in Organic Crystals.
    Wang L; Beljonne D
    J Phys Chem Lett; 2013 Jun; 4(11):1888-94. PubMed ID: 26283125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bandlike motion and mobility saturation in organic molecular semiconductors.
    Fratini S; Ciuchi S
    Phys Rev Lett; 2009 Dec; 103(26):266601. PubMed ID: 20366327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps.
    Dong J; Wu C
    J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossover from Hopping to Band-Like Charge Transport in an Organic Semiconductor Model: Atomistic Nonadiabatic Molecular Dynamics Simulation.
    Giannini S; Carof A; Blumberger J
    J Phys Chem Lett; 2018 Jun; 9(11):3116-3123. PubMed ID: 29787275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport.
    Lee CK; Moix J; Cao J
    J Chem Phys; 2015 Apr; 142(16):164103. PubMed ID: 25933748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: from coherent to incoherent transport.
    Yao Y; Si W; Hou X; Wu CQ
    J Chem Phys; 2012 Jun; 136(23):234106. PubMed ID: 22779580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation.
    Shuai Z; Geng H; Xu W; Liao Y; André JM
    Chem Soc Rev; 2014 Apr; 43(8):2662-79. PubMed ID: 24394992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transport in organic semiconductors: assessment of the mean field theory in the hopping regime.
    Wang L; Beljonne D
    J Chem Phys; 2013 Aug; 139(6):064316. PubMed ID: 23947864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conduction band structure of high-mobility organic semiconductors and partially dressed polaron formation.
    Sato H; Abd Rahman SA; Yamada Y; Ishii H; Yoshida H
    Nat Mater; 2022 Aug; 21(8):910-916. PubMed ID: 35851148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder.
    Troisi A; Orlandi G
    Phys Rev Lett; 2006 Mar; 96(8):086601. PubMed ID: 16606209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge carrier dynamics in phonon-induced fluctuation systems from time-dependent wavepacket diffusion approach.
    Zhong X; Zhao Y
    J Chem Phys; 2011 Oct; 135(13):134110. PubMed ID: 21992285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach.
    Chen L; Zhao Y
    J Chem Phys; 2017 Dec; 147(21):214102. PubMed ID: 29221386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal.
    Wang LJ; Peng Q; Li QK; Shuai Z
    J Chem Phys; 2007 Jul; 127(4):044506. PubMed ID: 17672706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm.
    Carof A; Giannini S; Blumberger J
    Phys Chem Chem Phys; 2019 Dec; 21(48):26368-26386. PubMed ID: 31793569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.