These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11329664)

  • 1. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water.
    Lehtola MJ; Miettinen IT; Vartiainen T; Myllykangas T; Martikainen PJ
    Water Res; 2001 May; 35(7):1635-40. PubMed ID: 11329664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes.
    Lehtola MJ; Miettinen IT; Vartiainen T; Martikainen PJ
    Water Res; 2002 Sep; 36(15):3681-90. PubMed ID: 12369515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water.
    Lehtola MJ; Miettinen IT; Vartiainen T; Rantakokko P; Hirvonen A; Martikainen PJ
    Water Res; 2003 Mar; 37(5):1064-70. PubMed ID: 12553981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of microbially available phosphorus (MAP) in flemish drinking water.
    Polanska M; Huysman K; Van Keer C
    Water Res; 2005 Jun; 39(11):2267-72. PubMed ID: 15936053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation in drinking water affected by low concentrations of phosphorus.
    Lehtola MJ; Miettinen IT; Martikainen PJ
    Can J Microbiol; 2002 Jun; 48(6):494-9. PubMed ID: 12166676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water.
    Matilainen A; Iivari P; Sallanko J; Heiska E; Tuhkanen T
    Environ Technol; 2006 Oct; 27(10):1171-80. PubMed ID: 17144266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton.
    Hammes F; Meylan S; Salhi E; Köster O; Egli T; von Gunten U
    Water Res; 2007 Apr; 41(7):1447-54. PubMed ID: 17321564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Relationship between phosphorus and bacterial regrowth in drinking water].
    Jiang DL; Zhang XJ
    Huan Jing Ke Xue; 2004 Sep; 25(5):57-60. PubMed ID: 15623023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between phosphorus and biodegradable organic carbon on drinking water biofilm subject to chlorination.
    Park SK; Hu JY
    J Appl Microbiol; 2010 Jun; 108(6):2077-87. PubMed ID: 19919617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water.
    Hammes F; Salhi E; Köster O; Kaiser HP; Egli T; von Gunten U
    Water Res; 2006 Jul; 40(12):2275-86. PubMed ID: 16777174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new sensitive bioassay for determination of microbially available phosphorus in water.
    Lehtola MJ; Miettinen IT; Vartiainen T; Martikainen PJ
    Appl Environ Microbiol; 1999 May; 65(5):2032-4. PubMed ID: 10223996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia.
    Lehtola MJ; Juhna T; Miettinen IT; Vartiainen T; Martikainen PJ
    J Ind Microbiol Biotechnol; 2004 Dec; 31(11):489-94. PubMed ID: 15672281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus limitation on bacterial regrowth in drinking water.
    Sang JQ; Zhang XH; Yu GZ; Wang ZS
    J Environ Sci (China); 2003 Nov; 15(6):773-8. PubMed ID: 14758895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system.
    Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J
    Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus and bacterial growth in drinking water.
    Miettinen IT; Vartiainen T; Martikainen PJ
    Appl Environ Microbiol; 1997 Aug; 63(8):3242-5. PubMed ID: 9251211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
    De Vera GA; Stalter D; Gernjak W; Weinberg HS; Keller J; Farré MJ
    Water Res; 2015 Dec; 87():49-58. PubMed ID: 26378731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of soft deposits from the distribution system improves the drinking water quality.
    Lehtola MJ; Nissinen TK; Miettinen IT; Martikainen PJ; Vartiainen T
    Water Res; 2004 Feb; 38(3):601-10. PubMed ID: 14723929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of alfalfa seed washing on the organic carbon concentration in chlorinated and ozonated water.
    Rajkowski KT; Rice EW
    J Food Prot; 2004 Apr; 67(4):813-7. PubMed ID: 15083737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water.
    Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM
    J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradability of DBP precursors after drinking water ozonation.
    de Vera GA; Keller J; Gernjak W; Weinberg H; Farré MJ
    Water Res; 2016 Dec; 106():550-561. PubMed ID: 27771605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.