These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11329670)

  • 1. Influence of peat on Fenton oxidation.
    Huling SG; Arnold RG; Sierka RA; Miller MR
    Water Res; 2001 May; 35(7):1687-94. PubMed ID: 11329670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical scavenging by solid mineral surfaces in oxidative treatment systems: Rate constants and implications.
    Rusevova Crincoli K; Huling SG
    Water Res; 2020 Feb; 169():115240. PubMed ID: 31706122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction.
    Lin ZR; Zhao L; Dong YH
    Chemosphere; 2015 Dec; 141():7-12. PubMed ID: 26069944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II.
    Maezono T; Tokumura M; Sekine M; Kawase Y
    Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter.
    Rose AL; Waite TD
    Environ Sci Technol; 2002 Feb; 36(3):433-44. PubMed ID: 11871559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.
    Kong L; Hu X; He M
    Environ Sci Technol; 2015 Mar; 49(6):3499-505. PubMed ID: 25714842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions.
    Merino C; Matus F; Kuzyakov Y; Dyckmans J; Stock S; Dippold MA
    Sci Total Environ; 2021 Mar; 760():143397. PubMed ID: 33199010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.
    Zhao C; Arroyo-Mora LE; DeCaprio AP; Sharma VK; Dionysiou DD; O'Shea KE
    Water Res; 2014 Dec; 67():144-53. PubMed ID: 25269106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems.
    Kwan WP; Voelker BM
    Environ Sci Technol; 2004 Jun; 38(12):3425-31. PubMed ID: 15260344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.
    Yatagai T; Ohkawa Y; Kubo D; Kawase Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):74-83. PubMed ID: 27726493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid.
    Southworth BA; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1130-6. PubMed ID: 12680665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction.
    Fontmorin JM; Burgos Castillo RC; Tang WZ; Sillanpää M
    Water Res; 2016 Aug; 99():24-32. PubMed ID: 27132196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.
    Zhang Q; Chen S; Wang H; Yu H
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8666-8675. PubMed ID: 29457453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes.
    Yang Z; Yu A; Shan C; Gao G; Pan B
    Water Res; 2018 Jun; 137():37-46. PubMed ID: 29525426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of quinone cycle in Fe
    Zhou W; Gao J; Zhao H; Meng X; Wu S
    Environ Technol; 2017 Aug; 38(15):1887-1896. PubMed ID: 27734760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.