These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11329715)

  • 21. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments.
    Sun W; Sierra-Alvarez R; Milner L; Oremland R; Field JA
    Environ Sci Technol; 2009 Sep; 43(17):6585-91. PubMed ID: 19764221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidation of Fe(II)-EDTA by nitrite and by two nitrate-reducing Fe(II)-oxidizing Acidovorax strains.
    Klueglein N; Picardal F; Zedda M; Zwiener C; Kappler A
    Geobiology; 2015 Mar; 13(2):198-207. PubMed ID: 25612223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe(II)EDTA-NO reduction coupled with Fe(II)EDTA oxidation by a nitrate- and Fe(III)-reducing bacterium.
    Dong X; Zhang Y; Zhou J; Chen M; Wang X; Shi Z
    Bioresour Technol; 2013 Jun; 138():339-44. PubMed ID: 23624052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential for microbial oxidation of ferrous iron in basaltic glass.
    Xiong MY; Shelobolina ES; Roden EE
    Astrobiology; 2015 May; 15(5):331-40. PubMed ID: 25915449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil.
    Obuekwe CO; Westlake DW; Cook FD
    Can J Microbiol; 1981 Jul; 27(7):692-7. PubMed ID: 7197577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.
    Jamieson J; Prommer H; Kaksonen AH; Sun J; Siade AJ; Yusov A; Bostick B
    Environ Sci Technol; 2018 May; 52(10):5771-5781. PubMed ID: 29676145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation.
    Cheng K; Li H; Yuan X; Yin Y; Chen D; Wang Y; Li X; Chen G; Li F; Peng C; Wu Y; Liu T
    Geobiology; 2022 Nov; 20(6):810-822. PubMed ID: 35829697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbially Induced Formation of Fe Carbonates by Metal-Reducing Bacteria Enriched from a CO₂ Repository Candidate Site.
    Kang S; Roh Y
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1137-1140. PubMed ID: 29448546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrite as a causal factor for nitrate-dependent anaerobic corrosion of metallic iron induced by Prolixibacter strains.
    Iino T; Shono N; Ito K; Nakamura R; Sueoka K; Harayama S; Ohkuma M
    Microbiologyopen; 2021 Aug; 10(4):e1225. PubMed ID: 34459557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.
    Dippon U; Pantke C; Porsch K; Larese-Casanova P; Kappler A
    Environ Sci Technol; 2012 Jun; 46(12):6556-65. PubMed ID: 22642801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation.
    Senko JM; Mohamed Y; Dewers TA; Krumholz LR
    Environ Sci Technol; 2005 Apr; 39(8):2529-36. PubMed ID: 15884345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Meta-omics Reveal
    Huang YM; Straub D; Blackwell N; Kappler A; Kleindienst S
    Appl Environ Microbiol; 2021 Jul; 87(15):e0049621. PubMed ID: 34020935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism.
    Tai YL; Dempsey BA
    Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for the occurrence of Feammox coupled with nitrate-dependent Fe(II) oxidation in natural enrichment cultures.
    Wang W; Ding B; Hu Y; Zhang H; He Y; She Y; Li Z
    Chemosphere; 2022 Sep; 303(Pt 1):134903. PubMed ID: 35551943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)-contaminated groundwater.
    Liu Y; Feng C; Sheng Y; Dong S; Chen N; Hao C
    Ecotoxicol Environ Saf; 2018 Dec; 166():437-445. PubMed ID: 30292110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous cultivation of the lithoautotrophic nitrate-reducing Fe(II)-oxidizing culture KS in a chemostat bioreactor.
    Bayer T; Tomaszewski EJ; Bryce C; Kappler A; Byrne JM
    Environ Microbiol Rep; 2023 Aug; 15(4):324-334. PubMed ID: 36992623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.
    Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.
    Gauger T; Konhauser K; Kappler A
    Astrobiology; 2016 Apr; 16(4):301-10. PubMed ID: 27027418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.