BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11329883)

  • 21. The C-terminal domain of MutY glycosylase determines the 7,8-dihydro-8-oxo-guanine specificity and is crucial for mutation avoidance.
    Li X; Wright PM; Lu AL
    J Biol Chem; 2000 Mar; 275(12):8448-55. PubMed ID: 10722679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli.
    Tajiri T; Maki H; Sekiguchi M
    Mutat Res; 1995 May; 336(3):257-67. PubMed ID: 7739614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate recognition by Escherichia coli MutY using substrate analogs.
    Chepanoske CL; Porello SL; Fujiwara T; Sugiyama H; David SS
    Nucleic Acids Res; 1999 Aug; 27(15):3197-204. PubMed ID: 10454618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.
    Porello SL; Leyes AE; David SS
    Biochemistry; 1998 Oct; 37(42):14756-64. PubMed ID: 9778350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans.
    Li X; Lu AL
    J Bacteriol; 2001 Nov; 183(21):6151-8. PubMed ID: 11591657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Escherichia coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA.
    Matsumoto Y; Zhang QM; Takao M; Yasui A; Yonei S
    Nucleic Acids Res; 2001 May; 29(9):1975-81. PubMed ID: 11328882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic mechanism and DNA substrate recognition of Escherichia coli MutY protein.
    Lu AL; Yuen DS; Cillo J
    J Biol Chem; 1996 Sep; 271(39):24138-43. PubMed ID: 8798653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines.
    Dherin C; Dizdaroglu M; Doerflinger H; Boiteux S; Radicella JP
    Nucleic Acids Res; 2000 Dec; 28(23):4583-92. PubMed ID: 11095666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A repair system for 8-oxo-7,8-dihydrodeoxyguanine.
    Michaels ML; Tchou J; Grollman AP; Miller JH
    Biochemistry; 1992 Nov; 31(45):10964-8. PubMed ID: 1445834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli.
    Zharkov DO; Gilboa R; Yagil I; Kycia JH; Gerchman SE; Shoham G; Grollman AP
    Biochemistry; 2000 Dec; 39(48):14768-78. PubMed ID: 11101292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine.
    van der Kemp PA; Thomas D; Barbey R; de Oliveira R; Boiteux S
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5197-202. PubMed ID: 8643552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E.coli enzymes.
    Chmiel NH; Livingston AL; David SS
    J Mol Biol; 2003 Mar; 327(2):431-43. PubMed ID: 12628248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the structural and functional domains of MutY, an Escherichia coli DNA mismatch repair enzyme.
    Manuel RC; Czerwinski EW; Lloyd RS
    J Biol Chem; 1996 Jul; 271(27):16218-26. PubMed ID: 8663135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY.
    Golinelli MP; Chmiel NH; David SS
    Biochemistry; 1999 Jun; 38(22):6997-7007. PubMed ID: 10353811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA-mediated charge transport as a probe of MutY/DNA interaction.
    Boon EM; Pope MA; Williams SD; David SS; Barton JK
    Biochemistry; 2002 Jul; 41(26):8464-70. PubMed ID: 12081496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of an Escherichia coli mutant MutY with a cysteine to alanine mutation at the iron-sulfur cluster domain.
    Lu AL; Wright PM
    Biochemistry; 2003 Apr; 42(13):3742-50. PubMed ID: 12667065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miscoding and misincorporation of 8-oxo-guanine during leading and lagging strand synthesis in Escherichia coli.
    Watanabe T; van Geldorp G; Najrana T; Yamamura E; Nunoshiba T; Yamamoto K
    Mol Gen Genet; 2001 Feb; 264(6):836-41. PubMed ID: 11254131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways.
    Fowler RG; White SJ; Koyama C; Moore SC; Dunn RL; Schaaper RM
    DNA Repair (Amst); 2003 Feb; 2(2):159-73. PubMed ID: 12531387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli MutY.
    Williams SD; David SS
    Biochemistry; 1999 Nov; 38(47):15417-24. PubMed ID: 10569924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine.
    Bridges BA; Sekiguchi M; Tajiri T
    Mol Gen Genet; 1996 Jun; 251(3):352-7. PubMed ID: 8676878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.