These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 11330351)
1. Peptide phage display library as source for inhibitors of clostridial neurotoxins. Zdanovsky AG; Karassina NV; Simpson D; Zdanovskaia MV J Protein Chem; 2001 Jan; 20(1):73-80. PubMed ID: 11330351 [TBL] [Abstract][Full Text] [Related]
2. Structure and function of tetanus and botulinum neurotoxins. Montecucco C; Schiavo G Q Rev Biophys; 1995 Nov; 28(4):423-72. PubMed ID: 8771234 [TBL] [Abstract][Full Text] [Related]
3. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Schiavo G; Benfenati F; Poulain B; Rossetto O; Polverino de Laureto P; DasGupta BR; Montecucco C Nature; 1992 Oct; 359(6398):832-5. PubMed ID: 1331807 [TBL] [Abstract][Full Text] [Related]
4. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster. Doxey AC; Lynch MD; Müller KM; Meiering EM; McConkey BJ BMC Evol Biol; 2008 Nov; 8():316. PubMed ID: 19014598 [TBL] [Abstract][Full Text] [Related]
5. Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus. Schiavo G; Rossetto O; Benfenati F; Poulain B; Montecucco C Ann N Y Acad Sci; 1994 Mar; 710():65-75. PubMed ID: 7786341 [TBL] [Abstract][Full Text] [Related]
6. Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins. Dasgupta BR; Antharavally BS; Tepp W; Evenson ML Protein J; 2005 Aug; 24(6):337-68. PubMed ID: 16323041 [TBL] [Abstract][Full Text] [Related]
7. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. Pellizzari R; Rossetto O; Lozzi L; Giovedi' S; Johnson E; Shone CC; Montecucco C J Biol Chem; 1996 Aug; 271(34):20353-8. PubMed ID: 8702770 [TBL] [Abstract][Full Text] [Related]
8. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Foran P; Shone CC; Dolly JO Biochemistry; 1994 Dec; 33(51):15365-74. PubMed ID: 7803399 [TBL] [Abstract][Full Text] [Related]
9. Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Schiavo G; Rossetto O; Montecucco C Semin Cell Biol; 1994 Aug; 5(4):221-9. PubMed ID: 7994006 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of action of tetanus and botulinum neurotoxins. Montecucco C; Schiavo G Mol Microbiol; 1994 Jul; 13(1):1-8. PubMed ID: 7527117 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic profiling of tetanus and botulinum neurotoxins based on vesicle-associated-membrane protein derived fluorogenic substrates. Perpetuo EA; Juliano L; Juliano MA; Fratelli F; Prado SM; Pimenta DC; Lebrun I Protein Pept Lett; 2008; 15(10):1100-6. PubMed ID: 19075822 [TBL] [Abstract][Full Text] [Related]
12. Hinge peptide combinatorial libraries for inhilbitors of botulinum neurotoxins and saxitoxin: deconvolution strategy. Moore GJ; Moore DM; Roy SS; Hayden LJ; Hamilton MG; Chan NW; Lee WE Mol Divers; 2006 Feb; 10(1):9-16. PubMed ID: 16404524 [TBL] [Abstract][Full Text] [Related]
13. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. Binz T; Blasi J; Yamasaki S; Baumeister A; Link E; Südhof TC; Jahn R; Niemann H J Biol Chem; 1994 Jan; 269(3):1617-20. PubMed ID: 8294407 [TBL] [Abstract][Full Text] [Related]
14. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Rummel A; Mahrhold S; Bigalke H; Binz T Mol Microbiol; 2004 Feb; 51(3):631-43. PubMed ID: 14731268 [TBL] [Abstract][Full Text] [Related]
16. Cloning and expression of a region of vesicle associated membrane protein2 (VAMP2) gene and its use as a recombinant peptide substrate for assaying clostridial neurotoxins in contaminated biologicals. Moghaddam MM; Mousavi L; Shokrgozar MA; Amani J; Nazariyan S; Azari S Biologicals; 2010 Jan; 38(1):113-9. PubMed ID: 20005125 [TBL] [Abstract][Full Text] [Related]
17. Re-engineering the target specificity of Clostridial neurotoxins - a route to novel therapeutics. Foster KA; Adams EJ; Durose L; Cruttwell CJ; Marks E; Shone CC; Chaddock JA; Cox CL; Heaton C; Sutton JM; Wayne J; Alexander FC; Rogers DF Neurotox Res; 2006 Apr; 9(2-3):101-7. PubMed ID: 16785105 [TBL] [Abstract][Full Text] [Related]
18. Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Singh BR; Li B; Read D Toxicon; 1995 Dec; 33(12):1541-7. PubMed ID: 8866611 [TBL] [Abstract][Full Text] [Related]
19. Recombinant derivatives of clostridial neurotoxins as delivery vehicles for proteins and small organic molecules. Zdanovskaia MV; Los G; Zdanovsky AG J Protein Chem; 2000 Nov; 19(8):699-707. PubMed ID: 11307955 [TBL] [Abstract][Full Text] [Related]
20. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. Williamson LC; Halpern JL; Montecucco C; Brown JE; Neale EA J Biol Chem; 1996 Mar; 271(13):7694-9. PubMed ID: 8631808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]