These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11330397)

  • 1. Identification and characterization of satellite III subfamilies to the acrocentric chromosomes.
    Bandyopadhyay R; McQuillan C; Page SL; Choo KH; Shaffer LG
    Chromosome Res; 2001; 9(3):223-33. PubMed ID: 11330397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of acrocentric cen-pter satellite DNA in Robertsonian translocation and chromosomal non-disjunction.
    Choo KH
    Mol Biol Med; 1990 Oct; 7(5):437-49. PubMed ID: 2095460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satellite III sequences on 14p and their relevance to Robertsonian translocation formation.
    Bandyopadhyay R; Berend SA; Page SL; Choo KH; Shaffer LG
    Chromosome Res; 2001; 9(3):235-42. PubMed ID: 11330398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes.
    Greig GM; Willard HF
    Genomics; 1992 Mar; 12(3):573-80. PubMed ID: 1559708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations.
    Choo KH; Vissel B; Brown R; Filby RG; Earle E
    Nucleic Acids Res; 1988 Feb; 16(4):1273-84. PubMed ID: 2831495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Evolution of satellite III DNA subfamilies among primates.
    Jarmuz M; Glotzbach CD; Bailey KA; Bandyopadhyay R; Shaffer LG
    Am J Hum Genet; 2007 Mar; 80(3):495-501. PubMed ID: 17273970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homologous subfamily of satellite III DNA on human chromosomes 14 and 22.
    Choo KH; Earle E; McQuillan C
    Nucleic Acids Res; 1990 Oct; 18(19):5641-8. PubMed ID: 2216757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of uniparental disomy following prenatal detection of Robertsonian translocations and isochromosomes.
    Berend SA; Horwitz J; McCaskill C; Shaffer LG
    Am J Hum Genet; 2000 Jun; 66(6):1787-93. PubMed ID: 10775524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of alpha-satellite DNA on human acrocentric chromosomes.
    Choo KH; Vissel B; Earle E
    Genomics; 1989 Aug; 5(2):332-44. PubMed ID: 2793186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations.
    Sullivan BA; Jenkins LS; Karson EM; Leana-Cox J; Schwartz S
    Am J Hum Genet; 1996 Jul; 59(1):167-75. PubMed ID: 8659523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chromosome 13-specific human satellite I DNA subfamily with minor presence on chromosome 21: further studies on Robertsonian translocations.
    Kalitsis P; Earle E; Vissel B; Shaffer LG; Choo KH
    Genomics; 1993 Apr; 16(1):104-12. PubMed ID: 8486347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization.
    Gravholt CH; Friedrich U; Caprani M; Jørgensen AL
    Genomics; 1992 Dec; 14(4):924-30. PubMed ID: 1478673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model for satellite associations of human acrocentric chromosomes.
    Lezhava T; Tsigroshvili Z; Dvalishvili N; Jokhadze T
    Georgian Med News; 2008 Nov; (164):90-9. PubMed ID: 19075353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 724 family of DNA sequences is interspersed about the pericentromeric regions of human acrocentric chromosomes.
    Kurnit DM; Roy S; Stewart GD; Schwedock J; Neve RL; Bruns GA; Van Keuren ML; Patterson D
    Cytogenet Cell Genet; 1986; 43(1-2):109-16. PubMed ID: 3022994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alphoid repetitive DNA in human chromosomes.
    Jørgensen AL
    Dan Med Bull; 1997 Nov; 44(5):522-34. PubMed ID: 9408737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite DNA sequences in the human acrocentric chromosomes: information from translocations and heteromorphisms.
    Gosden JR; Lawrie SS; Gosden CM
    Am J Hum Genet; 1981 Mar; 33(2):243-51. PubMed ID: 6163355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of members of the low-copy-number repetitive DNA sequence family chAB4 within the p arms of human acrocentric chromosomes: characterization of Robertsonian translocations.
    Kehrer-Sawatzki H; Wöhr G; Schempp W; Eisenbarth I; Barbi G; Assum G
    Chromosome Res; 1998 Sep; 6(6):429-35. PubMed ID: 9865780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications.
    Farrell SA; Winsor EJ; Markovic VD
    Am J Med Genet; 1993 Jul; 46(6):715-20. PubMed ID: 8362916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new multisequence family in human.
    Assum G; Fink T; Klett C; Lengl B; Schanbacher M; Uhl S; Wöhr G
    Genomics; 1991 Oct; 11(2):397-409. PubMed ID: 1769654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of human extrachromosomal DNA elements originating from different beta-satellite subfamilies.
    Assum G; Fink T; Steinbeisser T; Fisel KJ
    Hum Genet; 1993 Jun; 91(5):489-95. PubMed ID: 8314563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.