These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 11330997)

  • 21. Engineering a cysteine ligand into the zinc binding site of human carbonic anhydrase II.
    Kiefer LL; Krebs JF; Paterno SA; Fierke CA
    Biochemistry; 1993 Sep; 32(38):9896-900. PubMed ID: 8399158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallographic analysis of Thr-200-->His human carbonic anhydrase II and its complex with the substrate, HCO3-.
    Xue Y; Vidgren J; Svensson LA; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Jan; 15(1):80-7. PubMed ID: 8451242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila.
    Tripp BC; Ferry JG
    Biochemistry; 2000 Aug; 39(31):9232-40. PubMed ID: 10924116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor.
    Matulis D; Kranz JK; Salemme FR; Todd MJ
    Biochemistry; 2005 Apr; 44(13):5258-66. PubMed ID: 15794662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Zn(II)-binding site engineered into retinol-binding protein exhibits metal-ion specificity and allows highly efficient affinity purification with a newly designed metal ligand.
    Schmidt AM; Müller HN; Skerra A
    Chem Biol; 1996 Aug; 3(8):645-53. PubMed ID: 8807898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering the zinc binding site of human carbonic anhydrase II: structure of the His-94-->Cys apoenzyme in a new crystalline form.
    Alexander RS; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1993 Feb; 32(6):1510-8. PubMed ID: 8431430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How the extra methylene group affects the ligation properties of Glu vs. Asp and Gln vs. Asn amino acids: a DFT/PCM study.
    Dudev T; Doudeva L
    J Mol Model; 2017 Feb; 23(2):45. PubMed ID: 28154982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II.
    Cox JD; Hunt JA; Compher KM; Fierke CA; Christianson DW
    Biochemistry; 2000 Nov; 39(45):13687-94. PubMed ID: 11076507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of metal ligand mutants of tyrosine hydroxylase: insights into the plasticity of a 2-histidine-1-carboxylate triad.
    Fitzpatrick PF; Ralph EC; Ellis HR; Willmon OJ; Daubner SC
    Biochemistry; 2003 Feb; 42(7):2081-8. PubMed ID: 12590596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
    Pedroso MM; Ely F; Carpenter MC; Mitić N; Gahan LR; Ollis DL; Wilcox DE; Schenk G
    Biochemistry; 2017 Jul; 56(26):3328-3336. PubMed ID: 28562023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.
    Linkuvienė V; Matulienė J; Juozapaitienė V; Michailovienė V; Jachno J; Matulis D
    Biochim Biophys Acta; 2016 Apr; 1860(4):708-18. PubMed ID: 26794023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1).
    Guerrerio AL; Berg JM
    Biochemistry; 2004 May; 43(18):5437-44. PubMed ID: 15122909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grafting of a high-affinity Zn(II)-binding site on the beta-barrel of retinol-binding protein results in enhanced folding stability and enables simplified purification.
    Müller HN; Skerra A
    Biochemistry; 1994 Nov; 33(47):14126-35. PubMed ID: 7947824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of metal ions in galactose-1-phosphate uridylyltransferase: an essential structural zinc and a nonessential structural iron.
    Geeganage S; Frey PA
    Biochemistry; 1999 Oct; 38(40):13398-406. PubMed ID: 10529216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary ligands enhance affinity at a designed metal-binding site.
    Marino SF; Regan L
    Chem Biol; 1999 Sep; 6(9):649-55. PubMed ID: 10467132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton transfer roles of lysine 64 and glutamic acid 64 replacing histidine 64 in the active site of human carbonic anhydrase II.
    Engstrand C; Forsman C; Liang Z; Lindskog S
    Biochim Biophys Acta; 1992 Aug; 1122(3):321-6. PubMed ID: 1354487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain.
    Li L; Binz T; Niemann H; Singh BR
    Biochemistry; 2000 Mar; 39(9):2399-405. PubMed ID: 10694409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.