These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1133117)

  • 1. Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length.
    Salmon ED
    J Cell Biol; 1975 Jun; 65(3):603-14. PubMed ID: 1133117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement.
    Salmon ED
    Ann N Y Acad Sci; 1975 Jun; 253():383-406. PubMed ID: 1096721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly.
    Salmon ED
    J Cell Biol; 1975 Jul; 66(1):114-27. PubMed ID: 1170171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and lability of Chaetopterus oocyte mitotic spindles isolated in the presence of porcine brain tubulin.
    Inoué S; Borisy GG; Kiehart DP
    J Cell Biol; 1974 Jul; 62(1):175-84. PubMed ID: 4407048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stabilization of microtubules in isolated spindles by tubulin-colchicine complex.
    Hays TS; Salmon ED
    Cell Motil Cytoskeleton; 1986; 6(3):282-90. PubMed ID: 3742623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine.
    Salmon ED; McKeel M; Hays T
    J Cell Biol; 1984 Sep; 99(3):1066-75. PubMed ID: 6470037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.
    Inoué S; Fuseler J; Salmon ED; Ellis GW
    Biophys J; 1975 Jul; 15(7):725-44. PubMed ID: 1139037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative studies on the polarization optical properties of living cells II. The role of microtubules in birefringence of the spindle of the sea urchin egg.
    Hiramoto Y; Hamaguchi Y; Shóji Y; Schroeder TE; Shimoda S; Nakamura S
    J Cell Biol; 1981 Apr; 89(1):121-30. PubMed ID: 7228897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells.
    Salmon ED; Goode D; Maugel TK; Bonar DB
    J Cell Biol; 1976 May; 69(2):443-54. PubMed ID: 1262399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new miniature hydrostatic pressure chamber for microscopy. Strain-free optical glass windows facilitate phase-contrast and polarized-light microscopy of living cells. Optional fixture permits simultaneous control of pressure and temperature.
    Salmon ED; Ellis GW
    J Cell Biol; 1975 Jun; 65(3):587-602. PubMed ID: 1094021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of anaphase chromosome velocity and microtubule depolymerization.
    Fuseler JW
    J Cell Biol; 1975 Dec; 67(3):789-800. PubMed ID: 1238405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle.
    Malawista SE; Sato H; Bensch KG
    Science; 1968 May; 160(3829):770-2. PubMed ID: 5689568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy.
    Wang WH; Meng L; Hackett RJ; Odenbourg R; Keefe DL
    Hum Reprod; 2001 Nov; 16(11):2374-8. PubMed ID: 11679523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement.
    Inoué S; Sato H
    J Gen Physiol; 1967 Jul; 50(6):Suppl:259-92. PubMed ID: 6058222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Polarized light microscopy for evaluation of oocytes as a prognostic factor in the evolution of a cycle in assisted reproduction].
    González-Ortega C; Cancino-Villarreal P; Alonzo-Torres VE; Martínez-Robles I; Pérez-Peña E; Gutiérrez-Gutiérrez AM
    Ginecol Obstet Mex; 2016 Apr; 84(4):217-27. PubMed ID: 27443098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system.
    Kiehart DP
    J Cell Biol; 1981 Mar; 88(3):604-17. PubMed ID: 7194345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thermodynamic analysis of mitotic spindle equilibrium at active metaphase.
    Stephens RE
    J Cell Biol; 1973 Apr; 57(1):133-47. PubMed ID: 4734864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of mitotic spindle organization and function.
    Inoué S; Ritter H
    Soc Gen Physiol Ser; 1975; 30():3-30. PubMed ID: 1103302
    [No Abstract]   [Full Text] [Related]  

  • 19. Microtubules in the metaphase-arrested mouse oocyte turn over rapidly.
    Gorbsky GJ; Simerly C; Schatten G; Borisy GG
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6049-53. PubMed ID: 2385583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule plus-end dynamics in Xenopus egg extract spindles.
    Tirnauer JS; Salmon ED; Mitchison TJ
    Mol Biol Cell; 2004 Apr; 15(4):1776-84. PubMed ID: 14767058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.