BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 11331360)

  • 1. Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current.
    Jung HY; Staff NP; Spruston N
    J Neurosci; 2001 May; 21(10):3312-21. PubMed ID: 11331360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons.
    Su H; Alroy G; Kirson ED; Yaari Y
    J Neurosci; 2001 Jun; 21(12):4173-82. PubMed ID: 11404402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons.
    Frick A; Magee J; Koester HJ; Migliore M; Johnston D
    J Neurosci; 2003 Apr; 23(8):3243-50. PubMed ID: 12716931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.
    Poolos NP; Johnston D
    J Neurosci; 1999 Jul; 19(13):5205-12. PubMed ID: 10377332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
    Staff NP; Jung HY; Thiagarajan T; Yao M; Spruston N
    J Neurophysiol; 2000 Nov; 84(5):2398-408. PubMed ID: 11067982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites.
    Golding NL; Kath WL; Spruston N
    J Neurophysiol; 2001 Dec; 86(6):2998-3010. PubMed ID: 11731556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis.
    Yaari Y; Yue C; Su H
    J Physiol; 2007 Apr; 580(Pt. 2):435-50. PubMed ID: 17272342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER; Su H; Yaari Y
    J Physiol; 2001 Apr; 532(Pt 1):205-16. PubMed ID: 11283235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzamil inhibits neuronal and heterologously expressed small conductance Ca
    Castañeda MS; Tonini R; Richards CD; Stocker M; Pedarzani P
    Neuropharmacology; 2019 Nov; 158():107738. PubMed ID: 31447417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of neuronal calcium signaling by neurotrophic factors.
    McCutchen ME; Bramham CR; Pozzo-Miller LD
    Int J Dev Neurosci; 2002; 20(3-5):199-207. PubMed ID: 12175855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+ -activated K+ current.
    Sipilä ST; Huttu K; Voipio J; Kaila K
    Eur J Neurosci; 2006 May; 23(9):2330-8. PubMed ID: 16706841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons.
    Bonansco C; Buño W
    Hippocampus; 2003; 13(1):150-63. PubMed ID: 12625465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic calcium encodes striatal neuron output during up-states.
    Kerr JN; Plenz D
    J Neurosci; 2002 Mar; 22(5):1499-512. PubMed ID: 11880480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical characterization of rat caudal hypothalamic neurons: calcium channel contribution to excitability.
    Fan YP; Horn EM; Waldrop TG
    J Neurophysiol; 2000 Dec; 84(6):2896-903. PubMed ID: 11110819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic control of spontaneous bursting in cerebellar Purkinje cells.
    Womack MD; Khodakhah K
    J Neurosci; 2004 Apr; 24(14):3511-21. PubMed ID: 15071098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons.
    Wang WT; Wan YH; Zhu JL; Lei GS; Wang YY; Zhang P; Hu SJ
    Neuroscience; 2006 Jun; 140(1):45-55. PubMed ID: 16527421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels.
    Normann C; Peckys D; Schulze CH; Walden J; Jonas P; Bischofberger J
    J Neurosci; 2000 Nov; 20(22):8290-7. PubMed ID: 11069935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.