These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1027 related articles for article (PubMed ID: 11331378)
1. Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. Giehl KM; Röhrig S; Bonatz H; Gutjahr M; Leiner B; Bartke I; Yan Q; Reichardt LF; Backus C; Welcher AA; Dethleffsen K; Mestres P; Meyer M J Neurosci; 2001 May; 21(10):3492-502. PubMed ID: 11331378 [TBL] [Abstract][Full Text] [Related]
2. The survival-promoting effect of glial cell line-derived neurotrophic factor on axotomized corticospinal neurons in vivo is mediated by an endogenous brain-derived neurotrophic factor mechanism. Giehl KM; Schütte A; Mestres P; Yan Q J Neurosci; 1998 Sep; 18(18):7351-60. PubMed ID: 9736655 [TBL] [Abstract][Full Text] [Related]
3. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Giehl KM; Tetzlaff W Eur J Neurosci; 1996 Jun; 8(6):1167-75. PubMed ID: 8752586 [TBL] [Abstract][Full Text] [Related]
4. Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion of the rat. Lee P; Zhuo H; Helke CJ Brain Res Mol Brain Res; 2001 Feb; 87(1):31-41. PubMed ID: 11223157 [TBL] [Abstract][Full Text] [Related]
5. Prevention of apoptotic but not necrotic cell death following neuronal injury by neurotrophins signaling through the tyrosine kinase receptor. Kim DH; Zhao X; Tu CH; Casaccia-Bonnefil P; Chao MV J Neurosurg; 2004 Jan; 100(1):79-87. PubMed ID: 14743916 [TBL] [Abstract][Full Text] [Related]
6. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. Kobayashi NR; Fan DP; Giehl KM; Bedard AM; Wiegand SJ; Tetzlaff W J Neurosci; 1997 Dec; 17(24):9583-95. PubMed ID: 9391013 [TBL] [Abstract][Full Text] [Related]
7. The endogenous survival promotion of axotomized rat corticospinal neurons by brain-derived neurotrophic factor is mediated via paracrine, rather than autocrine mechanisms. Schütte A; Yan Q; Mestres P; Giehl KM Neurosci Lett; 2000 Sep; 290(3):185-8. PubMed ID: 10963894 [TBL] [Abstract][Full Text] [Related]
8. Neurotrophins in cultured cells from periodontal tissues. Kurihara H; Shinohara H; Yoshino H; Takeda K; Shiba H J Periodontol; 2003 Jan; 74(1):76-84. PubMed ID: 12593600 [TBL] [Abstract][Full Text] [Related]
9. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. Barnabé-Heider F; Miller FD J Neurosci; 2003 Jun; 23(12):5149-60. PubMed ID: 12832539 [TBL] [Abstract][Full Text] [Related]
10. Rapid stimulatory effects of brain-derived neurotrophic factor and neurotrophin-3 on somatostatin release and intracellular calcium rise in primary hypothalamic cell cultures. Marmigère F; Choby C; Rage F; Richard S; Tapia-Arancibia L Neuroendocrinology; 2001 Jul; 74(1):43-54. PubMed ID: 11435757 [TBL] [Abstract][Full Text] [Related]
11. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Vanhecke E; Adriaenssens E; Verbeke S; Meignan S; Germain E; Berteaux N; Nurcombe V; Le Bourhis X; Hondermarck H Clin Cancer Res; 2011 Apr; 17(7):1741-52. PubMed ID: 21350004 [TBL] [Abstract][Full Text] [Related]
12. Constitutive phosphorylation of TrkC receptors in cultured cerebellar granule neurons might be responsible for the inability of NT-3 to increase neuronal survival and to activate p21 Ras. Zirrgiebel U; Lindholm D Neurochem Res; 1996 Jul; 21(7):851-9. PubMed ID: 8873090 [TBL] [Abstract][Full Text] [Related]
13. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. Funakoshi H; Frisén J; Barbany G; Timmusk T; Zachrisson O; Verge VM; Persson H J Cell Biol; 1993 Oct; 123(2):455-65. PubMed ID: 8408225 [TBL] [Abstract][Full Text] [Related]
14. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. Rudzinski M; Wong TP; Saragovi HU J Neurobiol; 2004 Feb; 58(3):341-54. PubMed ID: 14750147 [TBL] [Abstract][Full Text] [Related]
15. Expression of neurotrophins and their receptors in the mammalian ovary is developmentally regulated: changes at the time of folliculogenesis. Dissen GA; Hirshfield AN; Malamed S; Ojeda SR Endocrinology; 1995 Oct; 136(10):4681-92. PubMed ID: 7664689 [TBL] [Abstract][Full Text] [Related]
16. Overcoming the inhibitors of myelin with a novel neurotrophin strategy. Williams G; Williams EJ; Maison P; Pangalos MN; Walsh FS; Doherty P J Biol Chem; 2005 Feb; 280(7):5862-9. PubMed ID: 15572360 [TBL] [Abstract][Full Text] [Related]
17. Trophic dependencies of rodent corticospinal neurons. Giehl KM Rev Neurosci; 2001; 12(1):79-94. PubMed ID: 11236067 [TBL] [Abstract][Full Text] [Related]
18. A small molecule TrkB/TrkC neurotrophin receptor co-activator with distinctive effects on neuronal survival and process outgrowth. Yang T; Massa SM; Tran KC; Simmons DA; Rajadas J; Zeng AY; Jang T; Carsanaro S; Longo FM Neuropharmacology; 2016 Nov; 110(Pt A):343-361. PubMed ID: 27334657 [TBL] [Abstract][Full Text] [Related]
19. Acetylcholinesterase gene expression in axotomized rat facial motoneurons is differentially regulated by neurotrophins: correlation with trkB and trkC mRNA levels and isoforms. Fernandes KJ; Kobayashi NR; Jasmin BJ; Tetzlaff W J Neurosci; 1998 Dec; 18(23):9936-47. PubMed ID: 9822749 [TBL] [Abstract][Full Text] [Related]
20. Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Fundin BT; Silos-Santiago I; Ernfors P; Fagan AM; Aldskogius H; DeChiara TM; Phillips HS; Barbacid M; Yancopoulos GD; Rice FL Dev Biol; 1997 Oct; 190(1):94-116. PubMed ID: 9331334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]