These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 11331383)
1. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map. Gnuegge L; Schmid S; Neuhauss SC J Neurosci; 2001 May; 21(10):3542-8. PubMed ID: 11331383 [TBL] [Abstract][Full Text] [Related]
2. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade. Stuermer CA; Rohrer B; Münz H J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950 [TBL] [Abstract][Full Text] [Related]
3. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722 [TBL] [Abstract][Full Text] [Related]
4. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish. Olson MD; Meyer RL J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264 [TBL] [Abstract][Full Text] [Related]
7. Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish. Tokuoka H; Yoshida T; Matsuda N; Mishina M J Neurosci; 2002 Dec; 22(23):10324-32. PubMed ID: 12451132 [TBL] [Abstract][Full Text] [Related]
8. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT; Fleming MR; Leu B J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146 [TBL] [Abstract][Full Text] [Related]
9. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Yan X; Zhao B; Butt CM; Debski EA Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364 [TBL] [Abstract][Full Text] [Related]
10. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382 [TBL] [Abstract][Full Text] [Related]
11. Activity sharpens the map during the regeneration of the retinotectal projection in goldfish. Schmidt JT; Edwards DL Brain Res; 1983 Jun; 269(1):29-39. PubMed ID: 6307483 [TBL] [Abstract][Full Text] [Related]
12. The influence of activity on axon pathfinding in the optic tectum. Kita EM; Scott EK; Goodhill GJ Dev Neurobiol; 2015 Jun; 75(6):608-20. PubMed ID: 25556913 [TBL] [Abstract][Full Text] [Related]
13. Retinotopic order in the absence of axon competition. Gosse NJ; Nevin LM; Baier H Nature; 2008 Apr; 452(7189):892-5. PubMed ID: 18368050 [TBL] [Abstract][Full Text] [Related]
14. Compression and expansion without impulse activity in the retinotectal projection of goldfish. Meyer RL; Wolcott LL J Neurobiol; 1987 Nov; 18(6):549-67. PubMed ID: 3694194 [TBL] [Abstract][Full Text] [Related]
15. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade. Hartlieb E; Stuermer CA J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029 [TBL] [Abstract][Full Text] [Related]
16. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant. Matsuda N; Mishina M Development; 2004 May; 131(9):1913-25. PubMed ID: 15056614 [TBL] [Abstract][Full Text] [Related]
17. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. Roeser T; Baier H J Neurosci; 2003 May; 23(9):3726-34. PubMed ID: 12736343 [TBL] [Abstract][Full Text] [Related]
18. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. Schmidt JT; Buzzard M; Borress R; Dhillon S J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970 [TBL] [Abstract][Full Text] [Related]
19. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. Robles E; Filosa A; Baier H J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973 [TBL] [Abstract][Full Text] [Related]
20. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M; Pallas SL; Lim S; Finlay BL J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]