BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 11331504)

  • 1. When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia).
    Nespolo RF; Bacigalupe LD; Rezende EL; Bozinovic F
    Physiol Biochem Zool; 2001; 74(3):325-32. PubMed ID: 11331504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus).
    Van Sant MJ; Hammond KA
    Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative genetics of bioenergetics and growth-related traits in the wild mammal, Phyllotis darwini.
    Nespolo RF; Bustamante DM; Bacigalupe LD; Bozinovic F
    Evolution; 2005 Aug; 59(8):1829-37. PubMed ID: 16329249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Regulation of thermoregulatory thermogenesis].
    Kuroshima A
    Hokkaido Igaku Zasshi; 1995 Jan; 70(1):1-8. PubMed ID: 7744360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A test of the thermal-stress and the cost-of-burrowing hypotheses among populations of the subterranean rodent Spalacopus cyanus.
    Bozinovic F; Carter MJ; Ebensperger LA
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Mar; 140(3):329-36. PubMed ID: 15792598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum.
    Luna F; Roca P; Oliver J; Antenucci CD
    J Comp Physiol B; 2012 Oct; 182(7):971-83. PubMed ID: 22614630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation.
    McKechnie AE; Chetty K; Lovegrove BG
    J Exp Biol; 2007 Jan; 210(Pt 1):97-106. PubMed ID: 17170153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of prolonged acclimation to intermediate photoperiod and photo-schedule reversal in photosensitive golden hamsters.
    Jefimow M; Wojciechowski MS; Tegowska E
    J Exp Zool A Comp Exp Biol; 2005 Nov; 303(11):987-97. PubMed ID: 16217806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoregulatory capacities and torpor in the South American marsupial, Dromiciops gliroides.
    Cortés PA; Franco M; Moreno-Gómez FN; Barrientos K; Nespolo RF
    J Therm Biol; 2014 Oct; 45():1-8. PubMed ID: 25436944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold adaptive thermogenesis in small mammals from different geographical zones of China.
    Li Q; Sun R; Huang C; Wang Z; Liu X; Hou J; Liu J; Cai L; Li N; Zhang S; Wang Y
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jul; 129(4):949-61. PubMed ID: 11440879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonshivering thermogenesis in a marsupial (the tasmanian bettong Bettongia gaimardi) is not attributable to brown adipose tissue.
    Rose RW; West AK; Ye JM; McCormick GH; Colquhoun EQ
    Physiol Biochem Zool; 1999; 72(6):699-704. PubMed ID: 10603333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility in thermoregulatory physiology of two dunnarts, Sminthopsis macroura and Sminthopsis ooldea (Marsupialia; Dasyuridae).
    Tomlinson S; Withers PC; Maloney SK
    J Exp Biol; 2012 Jul; 215(Pt 13):2236-46. PubMed ID: 22675184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS; Clusella-Trullas S; Chown SL
    J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for within-individual energy reallocation in cold-challenged, egg-producing birds.
    Salvante KG; Vézina F; Williams TD
    J Exp Biol; 2010 Jun; 213(Pt 12):1991-2000. PubMed ID: 20511512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals.
    White CR
    Physiol Biochem Zool; 2003; 76(1):122-34. PubMed ID: 12695993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Norepinephrine thermogenesis in seasonally acclimatized and cold acclimated red-backed voles in Alaska.
    Feist DD; Rosenmann M
    Can J Physiol Pharmacol; 1976 Apr; 54(2):146-53. PubMed ID: 776371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula.
    Fontanillas P; Dépraz A; Giorgi MS; Perrin N
    Mol Ecol; 2005 Feb; 14(2):661-70. PubMed ID: 15660955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal and daily changes in the capacity for nonshivering thermogenesis in the golden hamsters housed under semi-natural conditions.
    Jefimow M; Wojciechowski M; Tegowska E
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):297-309. PubMed ID: 15123203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini).
    Nespolo RF; Bacigalupe LD; Bozinovic F
    Evolution; 2003 Jul; 57(7):1679-88. PubMed ID: 12940370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection for high activity-related aerobic metabolism does not alter the capacity of non-shivering thermogenesis in bank voles.
    Stawski C; Koteja P; Sadowska ET; Jefimow M; Wojciechowski MS
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Feb; 180():51-6. PubMed ID: 25446149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.