These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1133410)

  • 41. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes.
    El-Tahawy MM; Nenov A; Garavelli M
    J Chem Theory Comput; 2016 Sep; 12(9):4460-75. PubMed ID: 27494352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments.
    Kraack JP; Buckup T; Motzkus M
    Phys Chem Chem Phys; 2012 Oct; 14(40):13979-88. PubMed ID: 22990940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of the retinal isomers from the isomerization of all-trans-retinal by flash countercurrent chromatography.
    He M; Du W; Du Q; Zhang Y; Li B; Ke C; Ye Y; Du Q
    J Chromatogr A; 2013 Jan; 1271(1):67-70. PubMed ID: 23219476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A 1-H nuclear magnetic resonance determination of the conformations of the polyene chain portions of 9-cis- and 13-cis-retinal in solution.
    Rowan R; Sykes BD
    J Am Chem Soc; 1975 Mar; 97(5):1023-7. PubMed ID: 1133377
    [No Abstract]   [Full Text] [Related]  

  • 45. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
    van Keulen SC; Solano A; Rothlisberger U
    J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mediation of retinal photoisomerization by adduct formation with tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)-europium(II).
    Ellis AB; Schreiner R; Ulkus RA
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):3993-7. PubMed ID: 6945568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonadiabatic ab initio dynamics of two models of Schiff base retinal.
    Ishida T; Nanbu S; Nakamura H
    J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resonance Raman studies of the purple membrane.
    Aton B; Doukas AG; Callender RH; Becher B; Ebrey TG
    Biochemistry; 1977 Jun; 16(13):2995-9. PubMed ID: 880292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2004 Dec; 126(49):16018-37. PubMed ID: 15584736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resonance Raman spectra of bacteriorhodopsin's primary photoproduct: evidence for a distorted 13-cis retinal chromophore.
    Braiman M; Mathies R
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):403-7. PubMed ID: 6281770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resonance Raman studies of visual pigments.
    Callender R
    Annu Rev Biophys Bioeng; 1977; 6():33-55. PubMed ID: 326149
    [No Abstract]   [Full Text] [Related]  

  • 53. The structure of visual pigments. I. Carbon-13 nuclear magnetic resonance spectroscopy of N-all-trans-retinylidenepropylimine and its protonated species.
    Shriver J; Abrahamson EW; Mateescu GD
    J Am Chem Soc; 1976 Apr; 98(9):2407-9. PubMed ID: 1262656
    [No Abstract]   [Full Text] [Related]  

  • 54. Spectroscopic mimicry for the protonated retinal Schiff base in vivo with modified amphiphilic clay interlayers as a possible model of opsin environment.
    Sasaki M; Fukuhara T
    Photochem Photobiol; 1997 Nov; 66(5):716-8. PubMed ID: 9383996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Absence of isomerization of retinyl palmitate, retinol, and retinal in chlorinated and nonchlorinated solvents under gold light.
    Landers GM; Olson JA
    J Assoc Off Anal Chem; 1986; 69(1):50-5. PubMed ID: 3949702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spectral analysis and high-performance liquid chromatography of the cis-trans geometrical isomers of 5,6-Epoxyretinal.
    Ito M; Kodama A; Yamane T; Tsukida K
    J Nutr Sci Vitaminol (Tokyo); 1983 Apr; 29(2):105-10. PubMed ID: 6886834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrocyclization reaction of higher conjugated polyenals: photochemical behaviors of retinal (vitamin A1 aldehyde) homologues.
    Tsukida K; Ito M; Kodama A
    J Nutr Sci Vitaminol (Tokyo); 1978; 24(2):143-8. PubMed ID: 671105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR.
    Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A
    Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal.
    Crouch R; Purvin V; Nakanishi K; Ebrey T
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1538-42. PubMed ID: 1055424
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dark isomerization of retinals in the presence of phosphatidylethanolamine.
    Groenendijk GW; Jacobs CW; Bonting SL; Daemen FJ
    Eur J Biochem; 1980 May; 106(1):119-28. PubMed ID: 7341223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.