BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11334667)

  • 1. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2001 May; 87(3):255-61. PubMed ID: 11334667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic regulation of an alkaline p-nitrophenylphosphate phosphatase from Halobacterium salinarum in low water system by Mn2+ and monovalent cations.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    FEMS Microbiol Lett; 2001 May; 198(2):111-5. PubMed ID: 11430399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extreme halophilic enzyme active at low salt in reversed micelles.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2002 Feb; 93(2):159-64. PubMed ID: 11738722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased stability of malate dehydrogenase from Halobacterium salinarum at low salt concentration in reverse micelles.
    Piera-Velázquez S; Marhuenda-Egea F; Cadenas E
    Extremophiles; 2002 Oct; 6(5):407-12. PubMed ID: 12382117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Biotechnol Bioeng; 2002 Jun; 78(5):497-502. PubMed ID: 12115118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Archaea; 2002 Sep; 1(2):105-11. PubMed ID: 15803648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of Halobacterium halobium Mn(2+)-activated alkaline phosphatase.
    Bonet ML; Llorca FI; Cadenas E
    Biochem Mol Biol Int; 1994 Dec; 34(6):1109-20. PubMed ID: 7696983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of thiol groups in the reaction mechanism of Mn(2+)-activated alkaline p-nitrophenylphosphate phosphatase of the extreme halophilic archaebacterium Halobacterium halobium.
    Bonet ML; Llorca FI; Cadenas E
    Biochem Int; 1992 Dec; 28(4):633-41. PubMed ID: 1336386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline p-nitrophenylphosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations.
    Bonet ML; Llorca FI; Cadenas E
    Int J Biochem; 1992 May; 24(5):839-45. PubMed ID: 1317306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superactivity of peroxidase solubilized in reversed micellar systems.
    Setti L; Fevereiro P; Melo EP; Pifferi PG; Cabral JM; Aires-Barros MR
    Appl Biochem Biotechnol; 1995 Dec; 55(3):207-18. PubMed ID: 8579344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase.
    Wende A; Johansson P; Vollrath R; Dyall-Smith M; Oesterhelt D; Grininger M
    J Mol Biol; 2010 Jul; 400(1):52-62. PubMed ID: 20438737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme ph conditions.
    Frenkel-Mullerad H; Avnir D
    J Am Chem Soc; 2005 Jun; 127(22):8077-81. PubMed ID: 15926833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt.
    Ishibashi M; Tokunaga H; Hiratsuka K; Yonezawa Y; Tsurumaru H; Arakawa T; Tokunaga M
    FEBS Lett; 2001 Mar; 493(2-3):134-8. PubMed ID: 11287010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium.
    Brown-Peterson NJ; Salin ML
    J Bacteriol; 1995 Jan; 177(2):378-84. PubMed ID: 7814327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superactivity and phase-sensitivity of potato acid phosphatase entrapped in reverse micelles.
    Lalitha J; Mulimani VH
    Biochem Mol Biol Int; 1996 Oct; 40(3):571-8. PubMed ID: 8908367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatographic behaviour in reversed-phase high-performance liquid chromatography with micellar and submicellar mobile phases: effects of the organic modifier.
    Fischer J; Jandera P
    J Chromatogr B Biomed Appl; 1996 May; 681(1):3-19. PubMed ID: 8798907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved method for the flow-injection determination of iodine using the luminol chemiluminescence reaction in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol-cyclohexane.
    Fujiwara T; Mohammadzai IU; Kojima M; Kumamaru T
    Anal Sci; 2006 Jan; 22(1):67-71. PubMed ID: 16429775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic and hydrophobic interactions play a major role in the stability and refolding of halophilic proteins.
    Arakawa T; Tokunaga M
    Protein Pept Lett; 2004 Apr; 11(2):125-32. PubMed ID: 15078200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems.
    Shrestha RG; Shrestha LK; Aramaki K
    J Colloid Interface Sci; 2007 Jul; 311(1):276-84. PubMed ID: 17368470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein.
    Madern D; Zaccai G
    Biochimie; 2004; 86(4-5):295-303. PubMed ID: 15194233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.