These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11334753)

  • 1. Development of a lightweight and adaptable multiple-axis hand prosthesis.
    Light CM; Chappell PH
    Med Eng Phys; 2000 Dec; 22(10):679-84. PubMed ID: 11334753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent multifunction myoelectric control of hand prostheses.
    Light CM; Chappell PH; Hudgins B; Engelhart K
    J Med Eng Technol; 2002; 26(4):139-46. PubMed ID: 12396328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two multiarticulated hydraulic hand prostheses.
    Pylatiuk C; Schulz S; Kargov A; Bretthauer G
    Artif Organs; 2004 Nov; 28(11):980-6. PubMed ID: 15504113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrotactile Feedback with Spatial and Mixed Coding for Object Identification and Closed-loop Control of Grasping Force in Myoelectric Prostheses.
    Chai G; Briand J; Su S; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1805-1808. PubMed ID: 31946247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of control format and hand design in single axis myoelectric hands: assessment of functionality of prosthetic hands using the Southampton Hand Assessment Procedure.
    Kyberd PJ
    Prosthet Orthot Int; 2011 Sep; 35(3):285-93. PubMed ID: 21937574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of multi-grip myoelectric prosthetic hands on daily activities, pain-related disability and prosthesis use compared with single-grip myoelectric prostheses: A single-case study.
    Widehammar C; Hiyoshi A; Lidström Holmqvist K; Lindner H; Hermansson L
    J Rehabil Med; 2022 Jan; 54():jrm00245. PubMed ID: 34766184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The multi-grip and standard myoelectric hand prosthesis compared: does the multi-grip hand live up to its promise?
    Kerver N; Schuurmans V; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2023 Feb; 20(1):22. PubMed ID: 36793049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering.
    Tura A; Lamberti C; Davalli A; Sacchetti R
    J Rehabil Res Dev; 1998 Jan; 35(1):14-26. PubMed ID: 9505249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of silicone prosthesis on hand function, grip power and grip-force tracking ability after finger amputation.
    Kuret Z; Burger H; Vidmar G; Maver T
    Prosthet Orthot Int; 2016 Dec; 40(6):744-750. PubMed ID: 26243175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Southampton Hand: an intelligent myoelectric prosthesis.
    Kyberd PJ; Chappell PH
    J Rehabil Res Dev; 1994 Nov; 31(4):326-34. PubMed ID: 7869280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive control system for a complete hand/arm prosthesis.
    Swain ID; Nightingale JM
    J Biomed Eng; 1980 Jul; 2(3):163-6. PubMed ID: 7412244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the grip force distribution in natural hands and in prosthetic hands.
    Kargov A; Pylatiuk C; Martin J; Schulz S; Döderlein L
    Disabil Rehabil; 2004 Jun; 26(12):705-11. PubMed ID: 15204492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-dependent adaptation improves robustness of myoelectric control for upper-limb prostheses.
    Patel GK; Hahne JM; Castellini C; Farina D; Dosen S
    J Neural Eng; 2017 Oct; 14(5):056016. PubMed ID: 28691694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a myoelectric 3D-printed prosthesis for a child with upper limb congenital amputation.
    Ccorimanya L; Watanabe R; Hassan M; Hada Y; Suzuki K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5394-5398. PubMed ID: 31947075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional benefit of an adaptive myoelectric prosthetic hand compared to a conventional myoelectric hand.
    Bergman K; Ornholmer L; Zackrisson K; Thyberg M
    Prosthet Orthot Int; 1992 Apr; 16(1):32-7. PubMed ID: 1584641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
    Raveh E; Portnoy S; Friedman J
    Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.