BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 11334928)

  • 21. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei.
    Hovel-Miner G; Mugnier M; Papavasiliou FN; Pinger J; Schulz D
    Results Probl Cell Differ; 2015; 57():23-46. PubMed ID: 26537376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence.
    Bradwell KR; Koparde VN; Matveyev AV; Serrano MG; Alves JMP; Parikh H; Huang B; Lee V; Espinosa-Alvarez O; Ortiz PA; Costa-Martins AG; Teixeira MMG; Buck GA
    BMC Genomics; 2018 Oct; 19(1):770. PubMed ID: 30355302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major.
    Kramer S; Kimblin NC; Carrington M
    BMC Genomics; 2010 May; 11():283. PubMed ID: 20444260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vaccine development against Trypanosoma cruzi and Leishmania species in the post-genomic era.
    Dumonteil E
    Infect Genet Evol; 2009 Dec; 9(6):1075-82. PubMed ID: 19805015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strand asymmetry patterns in trypanosomatid parasites.
    Nilsson D; Andersson B
    Exp Parasitol; 2005 Mar; 109(3):143-9. PubMed ID: 15713445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.
    Patino LH; Ramírez JD
    Infect Genet Evol; 2017 Apr; 49():273-282. PubMed ID: 28179142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome research and evolution in trypanosomes.
    Donelson JE
    Curr Opin Genet Dev; 1996 Dec; 6(6):699-703. PubMed ID: 8994839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trypanosoma brucei DMC1 does not act in DNA recombination, repair or antigenic variation in bloodstream stage cells.
    Proudfoot C; McCulloch R
    Mol Biochem Parasitol; 2006 Feb; 145(2):245-53. PubMed ID: 16289356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymorphism in the subtelomeric regions of chromosomes of Kinetoplastida.
    Fu G; Melville SE
    Trans R Soc Trop Med Hyg; 2002 Apr; 96 Suppl 1():S31-40. PubMed ID: 12055849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region.
    Westenberger SJ; Cerqueira GC; El-Sayed NM; Zingales B; Campbell DA; Sturm NR
    BMC Genomics; 2006 Mar; 7():60. PubMed ID: 16553959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress.
    Grazielle-Silva V; Zeb TF; Bolderson J; Campos PC; Miranda JB; Alves CL; Machado CR; McCulloch R; Teixeira SM
    PLoS Negl Trop Dis; 2015 Jun; 9(6):e0003870. PubMed ID: 26083967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery.
    Barnes RL; Shi H; Kolev NG; Tschudi C; Ullu E
    PLoS Pathog; 2012; 8(5):e1002678. PubMed ID: 22654659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origins of amino acid transporter loci in trypanosomatid parasites.
    Jackson AP
    BMC Evol Biol; 2007 Feb; 7():26. PubMed ID: 17319943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conservation of genetic linkage between heat shock protein 100 and glycosylphosphatidylinositol-specific phospholipase C in Trypanosoma brucei and Trypanosoma cruzi.
    Redpath MB; Carnall N; Webb H; Courel M; Amorim A; Güther ML; Cardoso de Almeida ML; Carrington M
    Mol Biochem Parasitol; 1998 Jul; 94(1):113-21. PubMed ID: 9719514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomes and genome projects of protozoan parasites.
    Ersfeld K
    Curr Issues Mol Biol; 2003 Jul; 5(3):61-74. PubMed ID: 12866830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncovering Pseudogenes and Intergenic Protein-coding Sequences in TriTryps' Genomes.
    Abrahim M; Machado E; Alvarez-Valín F; de Miranda AB; Catanho M
    Genome Biol Evol; 2022 Oct; 14(10):. PubMed ID: 36208292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disruption of Leishmania flagellum attachment zone architecture causes flagellum loss.
    Halliday C; de Liz LV; Vaughan S; Sunter JD
    Mol Microbiol; 2024 Jan; 121(1):53-68. PubMed ID: 38010644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges?
    Flores-López CA; Machado CA
    Infect Genet Evol; 2015 Jul; 33():37-46. PubMed ID: 25891283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolomic analysis of trypanosomatid protozoa.
    Creek DJ; Anderson J; McConville MJ; Barrett MP
    Mol Biochem Parasitol; 2012 Feb; 181(2):73-84. PubMed ID: 22027026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trypanosomatid genomes. Introduction.
    Ash C; Jasny BR
    Science; 2005 Jul; 309(5733):399. PubMed ID: 16020722
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.