These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 1133573)

  • 41. Gene expression in the axolotl germ line: Axdazl, Axvh, Axoct-4, and Axkit.
    Bachvarova RF; Masi T; Drum M; Parker N; Mason K; Patient R; Johnson AD
    Dev Dyn; 2004 Dec; 231(4):871-80. PubMed ID: 15517581
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N; Wakahara M
    Int J Dev Biol; 1994 Sep; 38(3):447-53. PubMed ID: 7848828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Topology of the germ plasm and development of primordial germ cells in inverted amphibian eggs.
    Wakahara M; Neff AW; Malacinski GM
    Differentiation; 1984 May; 26(3):203-10. PubMed ID: 11540803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Further analysis of the effect of ultra-violet irradiation on the formation of the germ line in Xenopus laevis.
    Thomas V; Heasman J; Ford C; Nagajski D; Wylie CC
    J Embryol Exp Morphol; 1983 Aug; 76():67-81. PubMed ID: 6685167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracellular localizations of the Dead End protein in Xenopus primordial germ cells.
    Taguchi A; Watanabe K; Orii H
    Int J Dev Biol; 2014; 58(10-12):793-8. PubMed ID: 26154321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Relationship between mitotic phases at different stages of embryonic development of axolotl].
    Desnitskiĭ AG
    Ontogenez; 1976; 7(1):82-4. PubMed ID: 934593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The synthetic activity of primordial germ cells in normal and irradiated neonatal male rats.
    Lett IC
    J Embryol Exp Morphol; 1968 Apr; 19(2):239-49. PubMed ID: 5656457
    [No Abstract]   [Full Text] [Related]  

  • 48. An ultrastructural study of primordial germ cells, oogonia and early oocytes in Xenopus laevis.
    al-Mukhtar KA; Webb AC
    J Embryol Exp Morphol; 1971 Oct; 26(2):195-217. PubMed ID: 5168216
    [No Abstract]   [Full Text] [Related]  

  • 49. Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis.
    Hudson C; Woodland HR
    Mech Dev; 1998 May; 73(2):159-68. PubMed ID: 9622619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Observations on early germ cell development and premeiotic ribosomal DNA amplification in Xenopus laevis.
    Kalt MR; Gall JG
    J Cell Biol; 1974 Aug; 62(2):460-72. PubMed ID: 4426916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct Evidence for the Presence of Germ Cell Determinant in Vegetal Pole Cytoplasm of Xenopus laevis and in a Subcellular Fraction of It: (Xenopus laevis/germ cell determinant/germ plasm/PGC induction).
    Ikenishi K; Nakazato S; Okuda T
    Dev Growth Differ; 1986 Nov; 28(6):563-568. PubMed ID: 37282218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial ribosomal RNA in the germinal granules in Xenopus embryos revisited.
    Kloc M; Bilinski S; Chan AP; Etkin LD
    Differentiation; 2001 Mar; 67(3):80-3. PubMed ID: 11428130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Xenopus Heterochronic Presumptive Primordial Germ Cells (pPGCs) Implanted in the Correct Position in Host Neurula Embryos can Differentiate into PGCs: (Xenopus laevis, PGCs/heterochronic presumptive PGCs/explant/germ plasm-bearing cells).
    Ikenishi K; Tanaka TS
    Dev Growth Differ; 1993 Aug; 35(4):439-445. PubMed ID: 37281908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification.
    Oh D; Houston DW
    Dev Biol; 2017 Dec; 432(2):237-247. PubMed ID: 29037933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlation between the cell cycle in the neurectoderm and differentiation during the early development of Xenopus laevis. 2 Inhibition of DNA synthesis and mitosis during gastrulation.
    Maleyvar RP; Lowery R
    Cytobios; 1981; 32(126):97-105. PubMed ID: 6460598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytonucleoproteins in cleaving eggs of Xenopus laevis.
    Arms K
    J Embryol Exp Morphol; 1968 Nov; 20(3):367-74. PubMed ID: 5750103
    [No Abstract]   [Full Text] [Related]  

  • 57. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single cell analysis of commitment in early embryogenesis.
    Heasman J; Snape A; Smith J; Wylie CC
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():297-316. PubMed ID: 3831216
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Refinement of gene expression patterns in the early Xenopus embryo.
    Wardle FC; Smith JC
    Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.