These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 11336298)

  • 1. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates.
    Miller C; Shanks H; Witt A; Rutkowski G; Mallapragada S
    Biomaterials; 2001 Jun; 22(11):1263-9. PubMed ID: 11336298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitin Nanofiber Micropatterned Flexible Substrates for Tissue Engineering
    Hassanzadeh P; Kharaziha M; Nikkhah M; Shin SR; Jin J; He S; Sun W; Zhong C; Dokmeci MR; Khademhosseini A; Rolandi M
    J Mater Chem B; 2013 Sep; 1(34):. PubMed ID: 24179675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Biocompatible, Biodegradable Copolymer Incorporating Electroactive Oligothiophene Units.
    Guimard NK; Sessler JL; Schmidt CE
    Macromolecules; 2009; 42(2):502-511. PubMed ID: 20046223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells.
    Zhang Z; Lv Y; Harati J; Song J; Du P; Ou P; Liang J; Wang H; Wang PY
    J Funct Biomater; 2023 Apr; 14(5):. PubMed ID: 37233348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submicron Topographically Patterned 3D Substrates Enhance Directional Axon Outgrowth of Dorsal Root Ganglia Cultured Ex Vivo.
    Fornaro M; Dipollina C; Giambalvo D; Garcia R; Sigerson C; Sharthiya H; Liu C; Nealey PF; Kristjansdottir K; Gasiorowski JZ
    Biomolecules; 2022 Jul; 12(8):. PubMed ID: 36008953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Oriented Co-Culture System Using 3D Scaffolds Fabricated via Non-Linear Lithography.
    Kordas A; Manganas P; Selimis A; Barmparis GD; Farsari M; Ranella A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable Biomaterials for Peripheral Nerve Regeneration-Technology Trends and Translational Tribulations.
    Sanchez Rezza A; Kulahci Y; Gorantla VS; Zor F; Drzeniek NM
    Front Bioeng Biotechnol; 2022; 10():863969. PubMed ID: 35573254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review.
    Liu F; Xu J; Wu L; Zheng T; Han Q; Liang Y; Zhang L; Li G; Yang Y
    Stem Cells Int; 2021; 2021():8124444. PubMed ID: 34349803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of neurotrophic factors in enhancing linear axonal growth of ganglionic sensory neurons
    Fornaro M; Giovannelli A; Foggetti A; Muratori L; Geuna S; Novajra G; Perroteau I
    Neural Regen Res; 2020 Sep; 15(9):1732-1739. PubMed ID: 32209780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofabrication for neural tissue engineering applications.
    Papadimitriou L; Manganas P; Ranella A; Stratakis E
    Mater Today Bio; 2020 Mar; 6():100043. PubMed ID: 32190832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the Process Physics of Ultrasound-Assisted Bioprinting.
    Chansoria P; Shirwaiker R
    Sci Rep; 2019 Sep; 9(1):13889. PubMed ID: 31554888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury.
    Hejčl A; Růžička J; Kekulová K; Svobodová B; Proks V; Macková H; Jiránková K; Kárová K; Machová Urdziková L; Kubinová Š; Cihlář J; Horák D; Jendelová P
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30131482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective.
    Ermis M; Antmen E; Hasirci V
    Bioact Mater; 2018 Sep; 3(3):355-369. PubMed ID: 29988483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult Mouse DRG Explant and Dissociated Cell Models to Investigate Neuroplasticity and Responses to Environmental Insults Including Viral Infection.
    Fornaro M; Sharthiya H; Tiwari V
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives.
    Liu S; Schackel T; Weidner N; Puttagunta R
    Front Cell Neurosci; 2017; 11():430. PubMed ID: 29375316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance.
    Shirazi RN; Aldabbagh F; Ronan W; Erxleben A; Rochev Y; McHugh P
    J Mater Sci Mater Med; 2016 Oct; 27(10):154. PubMed ID: 27590824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chemical and physical cues in enhancing neuritogenesis and peripheral nerve regeneration.
    Sigerson CD; Dipollina CJ; Fornaro M
    Neural Regen Res; 2016 Feb; 11(2):220-1. PubMed ID: 27073363
    [No Abstract]   [Full Text] [Related]  

  • 18. 3D Printed Anatomical Nerve Regeneration Pathways.
    Johnson BN; Lancaster KZ; Zhen G; He J; Gupta MK; Kong YL; Engel EA; Krick KD; Ju A; Meng F; Enquist LW; Jia X; McAlpine MC
    Adv Funct Mater; 2015 Oct; 25(39):6205-6217. PubMed ID: 26924958
    [No Abstract]   [Full Text] [Related]  

  • 19. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.
    Mobasseri A; Faroni A; Minogue BM; Downes S; Terenghi G; Reid AJ
    Tissue Eng Part A; 2015 Mar; 21(5-6):1152-62. PubMed ID: 25435096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system.
    Xie J; MacEwan MR; Liu W; Jesuraj N; Li X; Hunter D; Xia Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9472-80. PubMed ID: 24806389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.