These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11337061)

  • 1. Programmable biodegradable implants.
    Vogelhuber W; Rotunno P; Magni E; Gazzaniga A; Spruss T; Bernhardt G; Buschauer A; Göpferich A
    J Control Release; 2001 May; 73(1):75-88. PubMed ID: 11337061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brush-like branched biodegradable polyesters, part III. Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid).
    Frauke Pistel K; Breitenbach A; Zange-Volland R; Kissel T
    J Control Release; 2001 May; 73(1):7-20. PubMed ID: 11337055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why degradable polymers undergo surface erosion or bulk erosion.
    von Burkersroda F; Schedl L; Göpferich A
    Biomaterials; 2002 Nov; 23(21):4221-31. PubMed ID: 12194525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol).
    von Burkersroda F; Gref R; Göpferich A
    Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erosion of composite polymer matrices.
    Göpferich A
    Biomaterials; 1997 Mar; 18(5):397-403. PubMed ID: 9061180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the initial stages of drug release from a degradable matrix of poly(d,l-lactide-co-glycolide).
    Frank A; Kumar Rath S; Boey F; Venkatraman S
    Biomaterials; 2004 Feb; 25(5):813-21. PubMed ID: 14609670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor.
    Desai KG; Mallery SR; Schwendeman SP
    Pharm Res; 2008 Mar; 25(3):586-97. PubMed ID: 17891553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable implants--from pulsatile to controlled release.
    Guse C; Koennings S; Blunk T; Siepmann J; Goepferich A
    Int J Pharm; 2006 May; 314(2):161-9. PubMed ID: 16551497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres.
    Oh JE; Nam YS; Lee KH; Park TG
    J Control Release; 1999 Feb; 57(3):269-80. PubMed ID: 9895414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants.
    Ramchandani M; Robinson D
    J Control Release; 1998 Jul; 54(2):167-75. PubMed ID: 9724903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological properties of PLGA film-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide release.
    Santoveña A; Alvarez-Lorenzo C; Concheiro A; Llabrés M; Fariña JB
    Biomaterials; 2004 Feb; 25(5):925-31. PubMed ID: 14609681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo evaluation in rabbits of a controlled release 5-fluorouracil subconjunctival implant based on poly(D,L-lactide-co-glycolide).
    Wang G; Tucker IG; Roberts MS; Hirst LW
    Pharm Res; 1996 Jul; 13(7):1059-64. PubMed ID: 8842045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of controlled release poly(D,L-lactide-co-glycolide) millirods.
    Qian F; Szymanski A; Gao J
    J Biomed Mater Res; 2001 Jun; 55(4):512-22. PubMed ID: 11288079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and release properties of pellets fabricated from three commercial poly(D,L-lactide-co-glycolide) biodegradable polymers.
    Schmitt EA; Flanagan DR; Linhardt RJ
    J Pharm Sci; 1993 Mar; 82(3):326-9. PubMed ID: 8450430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled-release implant system formulated using biodegradable hemostatic gauze as scaffold.
    Xu L; Wu F; Yuan W; Jin T
    Int J Pharm; 2008 May; 355(1-2):249-58. PubMed ID: 18249510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy.
    Mader K; Gallez B; Liu KJ; Swartz HM
    Biomaterials; 1996 Feb; 17(4):457-61. PubMed ID: 8938242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A local delivery system for fentanyl based on biodegradable poly(L-lactide-co-glycolide) oligomer.
    Seo SA; Choi HS; Khang G; Rhee JM; Lee HB
    Int J Pharm; 2002 Jun; 239(1-2):93-101. PubMed ID: 12052694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein release kinetics of a biodegradable implant for fracture non-unions.
    Agrawal CM; Best J; Heckman JD; Boyan BD
    Biomaterials; 1995 Nov; 16(16):1255-60. PubMed ID: 8589196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of isoniazid release from poly(d,l-lactide-co-glycolide) matrices prepared by dry-mixing and low density polymeric foam methods.
    Hsu YY; Gresser JD; Stewart RR; Trantolo DJ; Lyons CM; Simons GA; Gangadharam PR; Wise DL
    J Pharm Sci; 1996 Jul; 85(7):706-13. PubMed ID: 8818994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.