BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11337074)

  • 1. Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes.
    Ghosh S; Bagchi S; Lahiri Majumder A
    Plant Sci; 2001 May; 160(6):1171-1181. PubMed ID: 11337074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype.
    Majee M; Maitra S; Dastidar KG; Pattnaik S; Chatterjee A; Hait NC; Das KP; Majumder AL
    J Biol Chem; 2004 Jul; 279(27):28539-52. PubMed ID: 15016817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach.
    Sengupta S; Majumder AL
    Planta; 2009 Mar; 229(4):911-29. PubMed ID: 19130079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice.
    Sengupta S; Majumder AL
    Plant Cell Environ; 2010 Apr; 33(4):526-42. PubMed ID: 19843254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress.
    Sengupta S; Patra B; Ray S; Majumder AL
    Plant Cell Environ; 2008 Oct; 31(10):1442-59. PubMed ID: 18643954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata.
    Ray S; Patra B; Das-Chatterjee A; Ganguli A; Majumder AL
    Planta; 2010 Apr; 231(5):1211-27. PubMed ID: 20213122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of wild rice Porteresia coarctata PcNHX1 antiporter gene (PcNHX1) in tobacco controlled by PcNHX1 promoter (PcNHX1p) confers Na
    Jegadeeson V; Kumari K; Pulipati S; Parida A; Venkataraman G
    Plant Physiol Biochem; 2019 Jun; 139():161-170. PubMed ID: 30897507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of a stress-induced cDNA encoding the translation initiation factor, eIF1, from the salt-tolerant wild relative of rice, Porteresia coarctata.
    Latha R; Salekdeh GH; Bennett J; Swaminathan MS
    Funct Plant Biol; 2004 Nov; 31(10):1035-1042. PubMed ID: 32688972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative metabolite profiling of salt sensitive
    Tamanna N; Mojumder A; Azim T; Iqbal MI; Alam MNU; Rahman A; Seraj ZI
    Plant Environ Interact; 2024 Jun; 5(3):e10155. PubMed ID: 38882243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice.
    Ghosh Dastidar K; Maitra S; Goswami L; Roy D; Das KP; Majumder AL
    Plant Physiol; 2006 Apr; 140(4):1279-96. PubMed ID: 16500989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf.
    Prusty MR; Kim SR; Vinarao R; Entila F; Egdane J; Diaz MGQ; Jena KK
    Front Plant Sci; 2018; 9():417. PubMed ID: 29740456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance.
    Kumar RG; Shah K; Dubey RS
    Plant Sci; 2000 Jul; 156(1):23-34. PubMed ID: 10908802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity.
    Parmar S; Gharat SA; Tagirasa R; Chandra T; Behera L; Dash SK; Shaw BP
    PLoS One; 2020; 15(4):e0230958. PubMed ID: 32294092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance.
    Roychoudhury A; Basu S; Sengupta DN
    J Plant Physiol; 2011 Mar; 168(4):317-28. PubMed ID: 20728960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms.
    Das-Chatterjee A; Goswami L; Maitra S; Dastidar KG; Ray S; Majumder AL
    FEBS Lett; 2006 Jul; 580(16):3980-8. PubMed ID: 16806195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties.
    Gupta P; De B
    Plant Signal Behav; 2017 Jul; 12(7):e1335845. PubMed ID: 28594277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage.
    Singh V; Singh AP; Bhadoria J; Giri J; Singh J; T V V; Sharma PC
    Protoplasma; 2018 Nov; 255(6):1667-1681. PubMed ID: 29740721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka.
    Kizhakkedath P; Jegadeeson V; Venkataraman G; Parida A
    Mol Biol Rep; 2015 Jun; 42(6):1091-105. PubMed ID: 25481774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance.
    Chang J; Cheong BE; Natera S; Roessner U
    Plant Physiol Biochem; 2019 Nov; 144():427-435. PubMed ID: 31639558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra).
    Das P; Manna I; Biswas AK; Bandyopadhyay M
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26625-26642. PubMed ID: 30003482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.