These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11337175)

  • 1. Design of a core-shelled polymer cylinder for potential programmable drug delivery.
    Qiu LY; Zhu KJ
    Int J Pharm; 2001 May; 219(1-2):151-60. PubMed ID: 11337175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile protein release from a laminated device comprising polyanhydrides and pH-sensitive complexes.
    Jiang HL; Zhu KJ
    Int J Pharm; 2000 Jan; 194(1):51-60. PubMed ID: 10601684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-crosslinked anhydride-modified polyester and -ethers for pH-sensitive drug release.
    Asikainen S; Seppälä J
    Eur J Pharm Biopharm; 2020 May; 150():33-42. PubMed ID: 32142953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyanhydrides. V. Branched polyanhydrides.
    Maniar M; Xie XD; Domb AJ
    Biomaterials; 1990 Nov; 11(9):690-4. PubMed ID: 2090304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-sensitive micelles self-assembled from polymer brush (PAE-
    Huang X; Liao W; Zhang G; Kang S; Zhang CY
    Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erosion of composite polymer matrices.
    Göpferich A
    Biomaterials; 1997 Mar; 18(5):397-403. PubMed ID: 9061180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.
    Ambrosio AM; Allcock HR; Katti DS; Laurencin CT
    Biomaterials; 2002 Apr; 23(7):1667-72. PubMed ID: 11924588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery.
    Gao Y; Li G; Zhou Z; Guo L; Liu X
    Colloids Surf B Biointerfaces; 2017 Dec; 160():364-371. PubMed ID: 28963957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective intracellular delivery and Th1 immune response induced by ovalbumin loaded in pH-responsive polyphosphazene polymersomes.
    Gao M; Peng Y; Jiang L; Qiu L
    Nanomedicine; 2018 Jul; 14(5):1609-1618. PubMed ID: 29649590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.
    Wang W; Ding J; Xiao C; Tang Z; Li D; Chen J; Zhuang X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2466-74. PubMed ID: 21649444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma.
    Wu Y; Chen W; Meng F; Wang Z; Cheng R; Deng C; Liu H; Zhong Z
    J Control Release; 2012 Dec; 164(3):338-45. PubMed ID: 22800578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol).
    Chan CK; Chu IM
    Biomaterials; 2003 Jan; 24(1):47-54. PubMed ID: 12417177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsatile release of parathyroid hormone from an implantable delivery system.
    Liu X; Pettway GJ; McCauley LK; Ma PX
    Biomaterials; 2007 Oct; 28(28):4124-31. PubMed ID: 17576005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel.
    Liang Y; Xiao L; Li Y; Zhai Y; Xie C; Deng L; Dong A
    J Biomater Sci Polym Ed; 2011; 22(4-6):701-15. PubMed ID: 20566053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of anticancer drug using pH-sensitive micelles from triblock copolymer MPEG-b-PBAE-b-PLA.
    Yang C; Xue Z; Liu Y; Xiao J; Chen J; Zhang L; Guo J; Lin W
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():254-262. PubMed ID: 29519437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery.
    Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S
    Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new poly(ethylene glycol)-graft-poly(D,L-lactic acid) as potential drug carriers.
    Pan J; Zhao M; Liu Y; Wang B; Mi L; Yang L
    J Biomed Mater Res A; 2009 Apr; 89(1):160-7. PubMed ID: 18431784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable drug delivery from an erodible association polymer system.
    Xu X; Lee PI
    Pharm Res; 1993 Aug; 10(8):1144-52. PubMed ID: 8415399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of pH-responsive polymer core-shell nanospheres for delivery of hydrophobic antineoplastic drug ellipticine.
    Wang H; Yang L; Rempel GL
    Macromol Biosci; 2014 Feb; 14(2):166-72. PubMed ID: 24106137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone).
    Safaei Nikouei N; Lavasanifar A
    Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.