BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 113395)

  • 1. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Its kinetic properties and a reconstitution of gluconate oxidase.
    Matsushita K; Shinagawa E; Adachi O; Ameyama M
    J Biochem; 1979 Jul; 86(1):249-56. PubMed ID: 113395
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form.
    Matsushita K; Shinagawa E; Adachi O; Ameyama M
    J Biochem; 1979 May; 85(5):1173-81. PubMed ID: 109426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-Gluconate dehydrogenase from bacteria, 2-keto-D-gluconate-yielding, membrane-bound.
    Matsushita K; Shinagawa E; Ameyama M
    Methods Enzymol; 1982; 89 Pt D():187-93. PubMed ID: 6815420
    [No Abstract]   [Full Text] [Related]  

  • 6. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria.
    Ameyama M; Matsushita K; Ohno Y; Shinagawa E; Adachi O
    FEBS Lett; 1981 Aug; 130(2):179-83. PubMed ID: 6793395
    [No Abstract]   [Full Text] [Related]  

  • 7. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi).
    van Schie BJ; Hellingwerf KJ; van Dijken JP; Elferink MG; van Dijl JM; Kuenen JG; Konings WN
    J Bacteriol; 1985 Aug; 163(2):493-9. PubMed ID: 3926746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus.
    McIntire W; Singer TP; Ameyama M; Adachi O; Matsushita K; Shinagawa E
    Biochem J; 1985 Nov; 231(3):651-4. PubMed ID: 4074328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa.
    Hunt JC; Phibbs PV
    J Bacteriol; 1983 May; 154(2):793-802. PubMed ID: 6404887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in P. aeruginosa.
    Snook CF; Tipton PA; Beamer LJ
    Biochemistry; 2003 Apr; 42(16):4658-68. PubMed ID: 12705829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe.
    Tsai CS; Shi JL; Ye HG
    Arch Biochem Biophys; 1995 Jan; 316(1):163-8. PubMed ID: 7840612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of Pseudomonas aeruginosa to form membrane-associated glucose dehydrogenase activity during anaerobic growth with nitrate.
    Hunt JC; Phibbs PV
    Biochem Biophys Res Commun; 1981 Oct; 102(4):1393-9. PubMed ID: 6797425
    [No Abstract]   [Full Text] [Related]  

  • 13. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism.
    Yang XP; Wei LJ; Ye JB; Yin B; Wei DZ
    Arch Biochem Biophys; 2008 Sep; 477(2):206-10. PubMed ID: 18407824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of GDP-mannose dehydrogenase from Pseudomonas aeruginosa by penicillic acid identifies a critical active site loop.
    Kimmel JL; Tipton PA
    Arch Biochem Biophys; 2005 Sep; 441(2):132-40. PubMed ID: 16111644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of some membrane dehydrogenases in Pseudomonas fluorescens.
    Lynch WH
    Can J Microbiol; 1982 Aug; 28(8):907-15. PubMed ID: 6814736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase.
    Naught LE; Gilbert S; Imhoff R; Snook C; Beamer L; Tipton P
    Biochemistry; 2002 Jul; 41(30):9637-45. PubMed ID: 12135385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Activation, by various aldoses, of dichlorophenol-indophenol reduction by endogenous constituents of a preparation of glucose dehydrogenase from Pseudomonas fluorescens].
    Wurtz B
    C R Seances Soc Biol Fil; 1979; 173(4):753-7. PubMed ID: 160821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allohydroxy-D-proline dehydrogenase. An inducible membrane-bound enzyme in Pseudomonas aeruginosa PA01.
    Bater AJ; Venables WA; Thomas S
    Arch Microbiol; 1977 Apr; 112(3):287-9. PubMed ID: 16578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency.
    Buch A; Archana G; Naresh Kumar G
    Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetics of ketogluconate formation in the gluconate-Stephenson medium in the presence of Serratia and Pseudomonas].
    Denis F
    C R Seances Soc Biol Fil; 1970 Sep; 164(2):381-4. PubMed ID: 4249134
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.