These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
50 related articles for article (PubMed ID: 113395)
1. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Its kinetic properties and a reconstitution of gluconate oxidase. Matsushita K; Shinagawa E; Adachi O; Ameyama M J Biochem; 1979 Jul; 86(1):249-56. PubMed ID: 113395 [No Abstract] [Full Text] [Related]
2. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form. Matsushita K; Shinagawa E; Adachi O; Ameyama M J Biochem; 1979 May; 85(5):1173-81. PubMed ID: 109426 [TBL] [Abstract][Full Text] [Related]
3. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption. Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837 [TBL] [Abstract][Full Text] [Related]
4. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291 [TBL] [Abstract][Full Text] [Related]
6. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. Ameyama M; Matsushita K; Ohno Y; Shinagawa E; Adachi O FEBS Lett; 1981 Aug; 130(2):179-83. PubMed ID: 6793395 [No Abstract] [Full Text] [Related]
7. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). van Schie BJ; Hellingwerf KJ; van Dijken JP; Elferink MG; van Dijl JM; Kuenen JG; Konings WN J Bacteriol; 1985 Aug; 163(2):493-9. PubMed ID: 3926746 [TBL] [Abstract][Full Text] [Related]
8. Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. McIntire W; Singer TP; Ameyama M; Adachi O; Matsushita K; Shinagawa E Biochem J; 1985 Nov; 231(3):651-4. PubMed ID: 4074328 [TBL] [Abstract][Full Text] [Related]
9. Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa. Hunt JC; Phibbs PV J Bacteriol; 1983 May; 154(2):793-802. PubMed ID: 6404887 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in P. aeruginosa. Snook CF; Tipton PA; Beamer LJ Biochemistry; 2003 Apr; 42(16):4658-68. PubMed ID: 12705829 [TBL] [Abstract][Full Text] [Related]
11. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe. Tsai CS; Shi JL; Ye HG Arch Biochem Biophys; 1995 Jan; 316(1):163-8. PubMed ID: 7840612 [TBL] [Abstract][Full Text] [Related]
12. Failure of Pseudomonas aeruginosa to form membrane-associated glucose dehydrogenase activity during anaerobic growth with nitrate. Hunt JC; Phibbs PV Biochem Biophys Res Commun; 1981 Oct; 102(4):1393-9. PubMed ID: 6797425 [No Abstract] [Full Text] [Related]
13. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism. Yang XP; Wei LJ; Ye JB; Yin B; Wei DZ Arch Biochem Biophys; 2008 Sep; 477(2):206-10. PubMed ID: 18407824 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of GDP-mannose dehydrogenase from Pseudomonas aeruginosa by penicillic acid identifies a critical active site loop. Kimmel JL; Tipton PA Arch Biochem Biophys; 2005 Sep; 441(2):132-40. PubMed ID: 16111644 [TBL] [Abstract][Full Text] [Related]
15. The role of some membrane dehydrogenases in Pseudomonas fluorescens. Lynch WH Can J Microbiol; 1982 Aug; 28(8):907-15. PubMed ID: 6814736 [TBL] [Abstract][Full Text] [Related]
17. [Activation, by various aldoses, of dichlorophenol-indophenol reduction by endogenous constituents of a preparation of glucose dehydrogenase from Pseudomonas fluorescens]. Wurtz B C R Seances Soc Biol Fil; 1979; 173(4):753-7. PubMed ID: 160821 [TBL] [Abstract][Full Text] [Related]
18. Allohydroxy-D-proline dehydrogenase. An inducible membrane-bound enzyme in Pseudomonas aeruginosa PA01. Bater AJ; Venables WA; Thomas S Arch Microbiol; 1977 Apr; 112(3):287-9. PubMed ID: 16578 [TBL] [Abstract][Full Text] [Related]
19. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Buch A; Archana G; Naresh Kumar G Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187 [TBL] [Abstract][Full Text] [Related]
20. [Kinetics of ketogluconate formation in the gluconate-Stephenson medium in the presence of Serratia and Pseudomonas]. Denis F C R Seances Soc Biol Fil; 1970 Sep; 164(2):381-4. PubMed ID: 4249134 [No Abstract] [Full Text] [Related] [Next] [New Search]