BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 113397)

  • 1. Structural components of sphingophosphonolipids from the ciliated protozoan, Tetrahymena pyriformis WH-14.
    Sugita M; Fukunaga Y; Ohkawa K; Nozawa Y; Hori T
    J Biochem; 1979 Aug; 86(2):281-8. PubMed ID: 113397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies on lipids of Tetrahymena pyriformis W.
    Berger H; Jones P; Hanahan DJ
    Biochim Biophys Acta; 1972 Apr; 260(4):617-29. PubMed ID: 4337562
    [No Abstract]   [Full Text] [Related]  

  • 3. Sphingophosphonolipid molecular species from edible mollusks and a jellyfish.
    Kariotoglou DM; Mastronicolis SK
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Sep; 136(1):27-44. PubMed ID: 12941637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. -Hydroxy fatty acids in sphingolipids of Tetrahymena.
    Ferguson KA; Conner RL; Mallory FB; Mallory CW
    Biochim Biophys Acta; 1972 May; 270(1):111-6. PubMed ID: 4624829
    [No Abstract]   [Full Text] [Related]  

  • 5. Sphingophosphonolipids, phospholipids, and fatty acids from Aegean jellyfish Aurelia aurita.
    Kariotoglou DM; Mastronicolis SK
    Lipids; 2001 Nov; 36(11):1255-64. PubMed ID: 11795859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the formation of alpha-hydroxy fatty acids. Evidence for a direct hydroxylation of nonhydroxy fatty acid-containing sphingolipids.
    Kaya K; Ramesha CS; Thompson GA
    J Biol Chem; 1984 Mar; 259(6):3548-53. PubMed ID: 6423633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-induced changes in the hydroxy and non-hydroxy fatty acid-containing sphingolipids abundant in the surface membrane of Tetrahymena pyriformis NT-1.
    Kaya K; Ramesha CS; Thompson GA
    J Lipid Res; 1984 Jan; 25(1):68-74. PubMed ID: 6423752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long chain base and fatty acid compositions of equine kidney sphingolipids.
    Hara A; Taketomi T
    J Biochem; 1975 Sep; 78(3):527-36. PubMed ID: 818074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of odd-numbered, normal fatty acids in Tetrahymena pyriformis W.
    Cassel DL; Ragona DG; Carriero L; Kempe JA; Conner RL
    Biochim Biophys Acta; 1981 Jan; 663(1):121-33. PubMed ID: 6783106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Tetrahymena sp. with unusual membrane lipid composition, with special reference to iso fatty acyl chains.
    Fukushima H; Kasai R; Akimori N; Nozawa Y
    Jpn J Exp Med; 1978 Oct; 48(5):373-80. PubMed ID: 107352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and distribution of ceramide aminoethylphosphonates in the oyster (Ostrea gigas).
    Matsubara T
    Biochim Biophys Acta; 1975 Jun; 388(3):353-60. PubMed ID: 1137715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of isovalerate supplementation on growth and fatty acid composition of Tetrahymena pyriformis W.
    Conner RL; Reilly AE
    Biochim Biophys Acta; 1975 Aug; 398(2):209-16. PubMed ID: 810159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on temperature adaptation in Tetrahymena. Positional distribution of fatty acids and species analysis of phosphatidylethanolamine from Tetrahymena pyriformis grown at different temperatures.
    Watanabe T; Fukushima H; Nozawa Y
    Biochim Biophys Acta; 1979 Dec; 575(3):365-74. PubMed ID: 117836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of ceramide aminoethylphosphonate from the sea anemone, Metridium senile.
    Karlsson KA; Samuelsson BE
    Biochim Biophys Acta; 1974 Feb; 337(2):204-13. PubMed ID: 4154778
    [No Abstract]   [Full Text] [Related]  

  • 15. Free ceramide, sphingomyelin, and glucosylceramide of isolated rat intestinal cells.
    Bouhours JF; Guignard H
    J Lipid Res; 1979 Sep; 20(7):879-907. PubMed ID: 490058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the glycosphingolipids of the starfish, Asterina pectinifera. I. The isolation and characterization of ceramide mono- and di-hexosides.
    Sugita M
    J Biochem; 1977 Nov; 82(5):1307-12. PubMed ID: 591503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of molecular species of ceramide 2-N-methyl-aminoethylphosphonates containing normal fatty acids and dihydroxy long chain bases from Turbo cornutus.
    Matsuura F; Matsubara T; Hayashi A
    J Biochem; 1973 Jul; 74(1):49-57. PubMed ID: 4733854
    [No Abstract]   [Full Text] [Related]  

  • 18. Detection and identification of Bacteriovorax stolpii UKi2 Sphingophosphonolipid molecular species.
    Jayasimhulu K; Hunt SM; Kaneshiro ES; Watanabe Y; Giner JL
    J Am Soc Mass Spectrom; 2007 Mar; 18(3):394-403. PubMed ID: 17123828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and quantitation of free ceramide containing nonhydroxy and 2-hydroxy fatty acids, and phytosphingosine by high-performance liquid chromatography.
    Iwamori M; Costello C; Moser HW
    J Lipid Res; 1979 Jan; 20(1):86-96. PubMed ID: 438657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of free ceramides in Bacteroides fragilis NCTC 9343.
    Miyagawa E; Azuma R; Suto T; Yano I
    J Biochem; 1979 Aug; 86(2):311-20. PubMed ID: 479134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.