BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 11340300)

  • 1. Pericyte regulation of renal medullary blood flow.
    Pallone TL; Silldorff EP
    Exp Nephrol; 2001; 9(3):165-70. PubMed ID: 11340300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion.
    Pallone TL; Silldorff EP; Turner MR
    Clin Exp Pharmacol Physiol; 1998 Jun; 25(6):383-92. PubMed ID: 9673811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of the renal medullary microcirculation.
    Pallone TL; Zhang Z; Rhinehart K
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F253-66. PubMed ID: 12529271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+) signaling and membrane potential in descending vasa recta pericytes and endothelia.
    Rhinehart K; Zhang Z; Pallone TL
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F852-60. PubMed ID: 12217877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The renal medullary microcirculation.
    Edwards A; Silldforff EP; Pallone TL
    Front Biosci; 2000 Jun; 5():E36-52. PubMed ID: 10833463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal pericytes: regulators of medullary blood flow.
    Kennedy-Lydon TM; Crawford C; Wildman SS; Peppiatt-Wildman CM
    Acta Physiol (Oxf); 2013 Feb; 207(2):212-25. PubMed ID: 23126245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intact kidney slice model to investigate vasa recta properties and function in situ.
    Crawford C; Kennedy-Lydon T; Sprott C; Desai T; Sawbridge L; Munday J; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Nephron Physiol; 2012; 120(3):p17-31. PubMed ID: 22833057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive responses of rat descending vasa recta to ischemia.
    Zhang Z; Payne K; Pallone TL
    Am J Physiol Renal Physiol; 2018 Mar; 314(3):F373-F380. PubMed ID: 28814437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential controls calcium entry into descending vasa recta pericytes.
    Zhang Z; Rhinehart K; Pallone TL
    Am J Physiol Regul Integr Comp Physiol; 2002 Oct; 283(4):R949-57. PubMed ID: 12228065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk.
    Mori T; O'Connor PM; Abe M; Cowley AW
    Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
    Kim J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F273-9. PubMed ID: 20392799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.
    Kennedy-Lydon T; Crawford C; Wildman SS; Peppiatt-Wildman CM
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F648-57. PubMed ID: 26202223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla.
    Mori T; Cowley AW; Ito S
    J Pharmacol Sci; 2006 Jan; 100(1):2-8. PubMed ID: 16404134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of isolated, perfused outermedullary descending human vasa recta.
    Sendeski MM; Liu ZZ; Perlewitz A; Busch JF; Ikromov O; Weikert S; Persson PB; Patzak A
    Acta Physiol (Oxf); 2013 May; 208(1):50-6. PubMed ID: 23414239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?
    Crawford C; Wildman SS; Kelly MC; Kennedy-Lydon TM; Peppiatt-Wildman CM
    Front Physiol; 2013; 4():307. PubMed ID: 24194721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits.
    Evans RG; Madden AC; Denton KM
    Acta Physiol Scand; 2000 Aug; 169(4):297-308. PubMed ID: 10951121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin and the concentrating mechanism.
    Anger MS; Berl T
    J Cardiovasc Pharmacol; 1986; 8 Suppl 7():S50-5. PubMed ID: 2434773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and perfusion of rat inner medullary vasa recta.
    Evans KK; Nawata CM; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Aug; 309(4):F300-4. PubMed ID: 26062876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.