BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 11340320)

  • 1. Slip resistance of casual footwear: implications for falls in older adults.
    Menz HB; Lord ST; McIntosh AS
    Gerontology; 2001; 47(3):145-9. PubMed ID: 11340320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces.
    Yamaguchi T; Hsu J; Li Y; Maki BE
    Appl Ergon; 2015 Nov; 51():9-17. PubMed ID: 26154199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane.
    Manning DP; Jones C
    Appl Ergon; 2001 Apr; 32(2):185-96. PubMed ID: 11277511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a high slip-resistant footwear outsole using a hybrid rubber surface pattern.
    Yamaguchi T; Hokkirigawa K
    Ind Health; 2014; 52(5):414-23. PubMed ID: 25055846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The validity and reliability of a portable slip meter for determining floor slipperiness during simulated heel strike.
    Grönqvist R; Hirvonen M; Rajamäki E; Matz S
    Accid Anal Prev; 2003 Mar; 35(2):211-25. PubMed ID: 12504142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing footwear for older people at risk of falls.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    J Rehabil Res Dev; 2008; 45(8):1167-81. PubMed ID: 19235118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
    Hsu J; Shaw R; Novak A; Li Y; Ormerod M; Newton R; Dutta T; Fernie G
    Ergonomics; 2016 May; 59(5):717-28. PubMed ID: 26555738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles.
    Jakobsen L; Lysdal FG; Bagehorn T; Kersting UG; Sivebaek IM
    Ergonomics; 2023 Mar; 66(3):322-329. PubMed ID: 35603991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of invoked slips while wearing flip-flops in wet and dry conditions: Does alternative footwear alter slip kinematics?
    Tennant LM; Fok DJ; Kingston DC; Winberg TB; Parkinson RJ; Laing AC; Callaghan JP
    Appl Ergon; 2021 Apr; 92():103318. PubMed ID: 33290936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
    Beschorner KE; Iraqi A; Redfern MS; Cham R; Li Y
    Ergonomics; 2019 May; 62(5):668-681. PubMed ID: 30638144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Friction between footwear and floor covered with solid particles under dry and wet conditions.
    Li KW; Meng F; Zhang W
    Int J Occup Saf Ergon; 2014; 20(1):43-53. PubMed ID: 24629869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants.
    Li KW; Wu HH; Lin YC
    Appl Ergon; 2006 Nov; 37(6):743-8. PubMed ID: 16427022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slipping on pedestrian surfaces: methods for measuring and evaluating the slip resistance.
    Wetzel C; Windhövel U; Mewes D; Ceylan O
    Int J Occup Saf Ergon; 2015; 21(3):256-67. PubMed ID: 26414511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance testing of work shoes labeled as slip resistant.
    Jones T; Iraqi A; Beschorner K
    Appl Ergon; 2018 Apr; 68():304-312. PubMed ID: 29409649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors.
    Grönqvist R
    Ergonomics; 1995 Feb; 38(2):224-241. PubMed ID: 28084937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower Extremity Muscle Activation in Alternative Footwear during Stance Phase of Slip Events.
    Chander H; Garner JC; Wade C; Knight AC
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33562784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of footwear sole hardness on slip initiation in young adults.
    Tsai YJ; Powers CM
    J Forensic Sci; 2008 Jul; 53(4):884-8. PubMed ID: 18482376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid gait termination: effects of age, walking surfaces and footwear characteristics.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    Gait Posture; 2009 Jul; 30(1):65-70. PubMed ID: 19359178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An apparatus and a method for determining the slip resistance of shoes and floors by simulation of human foot motions.
    Grönqvist R; Roine J; Järvinen E; Korhonen E
    Ergonomics; 1989 Aug; 32(8):979-95. PubMed ID: 2806228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.