BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 11340382)

  • 21. Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium.
    Ogura Y; Kimura H
    Surv Ophthalmol; 1995 May; 39 Suppl 1():S17-24. PubMed ID: 7660308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies.
    Mundargi RC; Srirangarajan S; Agnihotri SA; Patil SA; Ravindra S; Setty SB; Aminabhavi TM
    J Control Release; 2007 May; 119(1):59-68. PubMed ID: 17331611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable microspheres in drug delivery.
    Okada H; Toguchi H
    Crit Rev Ther Drug Carrier Syst; 1995; 12(1):1-99. PubMed ID: 8521523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. II. Controlled drug release and microsphere degradation.
    Kempen DH; Lu L; Zhu X; Kim C; Jabbari E; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2004 Aug; 70(2):293-302. PubMed ID: 15227674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soft tissue augmentation using sculptra.
    Humble G; Mest D
    Facial Plast Surg; 2004 May; 20(2):157-63. PubMed ID: 15643584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new vitreal drug delivery system using an implantable biodegradable polymeric device.
    Kimura H; Ogura Y; Hashizoe M; Nishiwaki H; Honda Y; Ikada Y
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2815-9. PubMed ID: 8188476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable nanoparticles for cytosolic delivery of therapeutics.
    Vasir JK; Labhasetwar V
    Adv Drug Deliv Rev; 2007 Aug; 59(8):718-28. PubMed ID: 17683826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of therapeutic efficacy of bleomycin by incorporation into biodegradable poly-d,l-lactic acid.
    Kumanohoso T; Natsugoe S; Shimada M; Aikou T
    Cancer Chemother Pharmacol; 1997; 40(2):112-6. PubMed ID: 9182831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers.
    Hawley AE; Illum L; Davis SS
    FEBS Lett; 1997 Jan; 400(3):319-23. PubMed ID: 9009222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers.
    Tabata Y; Ikada Y
    J Biomed Mater Res; 1988 Oct; 22(10):837-58. PubMed ID: 3220838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of biodegradable nanoparticles for liver-specific ribavirin delivery.
    Ishihara T; Kaneko K; Ishihara T; Mizushima T
    J Pharm Sci; 2014 Dec; 103(12):4005-4011. PubMed ID: 25335768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(epsilon-caprolactone) and poly (L-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury.
    Wong DY; Hollister SJ; Krebsbach PH; Nosrat C
    Tissue Eng; 2007 Oct; 13(10):2515-23. PubMed ID: 17655492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly-L-lactic acid: a new dimension in soft tissue augmentation.
    Rotunda AM; Narins RS
    Dermatol Ther; 2006; 19(3):151-8. PubMed ID: 16784514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microfabrication method of a biodegradable polymer chip for a controlled release system.
    Ito Y; Hasuda H; Morimatsu M; Takagi N; Hirai Y
    J Biomater Sci Polym Ed; 2005; 16(8):949-55. PubMed ID: 16128230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles.
    Dailey LA; Wittmar M; Kissel T
    J Control Release; 2005 Jan; 101(1-3):137-49. PubMed ID: 15588900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres.
    Ibrahim MA; Ismail A; Fetouh MI; Göpferich A
    J Control Release; 2005 Sep; 106(3):241-52. PubMed ID: 15970349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation and tissue reaction to intravitreous biodegradable poly(D,L-lactic-co-glycolic)acid microspheres.
    Giordano GG; Chevez-Barrios P; Refojo MF; Garcia CA
    Curr Eye Res; 1995 Sep; 14(9):761-8. PubMed ID: 8529414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of drug release from bioerodible polymer matrices.
    He J; Zhong C; Mi J
    Drug Deliv; 2005; 12(5):251-9. PubMed ID: 16188723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New biodegradable polymers for injectable drug delivery systems.
    Jeong B; Choi YK; Bae YH; Zentner G; Kim SW
    J Control Release; 1999 Nov; 62(1-2):109-14. PubMed ID: 10518642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering.
    Fan M; Guo Q; Luo J; Luo F; Xie P; Tang X; Qian Z
    J Biomater Appl; 2013 Aug; 28(2):288-97. PubMed ID: 22561978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.